HUMANIDADES, CIENCIA, TECNOLOGÍA E INNOVACIÓN EN PUEBLA

ISSN 2644-0903 online VOL. 2, NO. 1, 2020 WWW.ACADEMIAJOURNALS.COM

TRABAJO DE INVESTIGACIÓN AUSPICIADO POR EL CONVENIO CONCYTEP-ACADEMIA JOURNALS

ERIKA GABRIELA NOLASCO HICKMAN

MODELO DE SIMULACIÓN PARA LA DESHIDROGENACIÓN OXIDATIVA DEL ETANO EN UN CATALIZADOR MOVTENBO/TIO2

BENEMÉRITA UNIVERSIDAD AUTÓNOMA DE PUEBLA

VOCAL DIRECTORA DE TESIS: DRA. MAYRA RUIZ REYES CO-DIRECTOR DE TESIS: DR. GAMALIEL CHE-GALICIA PRESIDENTE: DR. ÁLVARO SAMPIERI CRODA SECRETARIO: DR. FRANCISCO

NÚMERO DE SECUENCIA 2-36

Benemérita Universidad Autónoma de Puebla

FACULTAD DE INGENIERÍA QUÍMICA

"MODELO DE SIMULACIÓN PARA LA DESHIDROGENACIÓN OXIDATIVA DEL ETANO EN UN CATALIZADOR MoVTeNbO/TiO₂"

Tesis presentada para obtener el grado de: Licenciatura en Ingeniería Química

Presenta:

Erika Gabriela Nolasco Hickman

Integrantes del Honorable Jurado del Examen Profesional:

> Vocal Directora de Tesis: Dra. Mayra Ruiz Reyes

Co-Director de Tesis: Dr. Gamaliel Che-Galicia

Presidente: Dr. Álvaro Sampieri Croda

Secretario: Dr. Francisco Manuel Pacheco Aguirre

Fecha aprobación de Tesis: Puebla Pue. A 18 septiembre de 2019

MODELO DE SIMULACIÓN PARA LA DESHIDROGENACIÓN OXIDATIVA DEL ETANO EN UN CATALIZADOR MoVTeNbO/TiO2

Autor: Erika Gabriela Nolasco Hickman

RESUMEN

En este trabajo de tesis se desarrolla un modelo de simulación en ASPEN PLUS V8.8 del sistema de reacción del proceso de deshidrogenación oxidativa de etano (ODH-Et) sobre el catalizador MoVTeNbO/TiO₂ para la producción de etileno, con la finalidad de evaluar la flexibilidad del proceso, mediante el estudio de la variación de las condiciones de operación y el rendimiento del proceso. Los parámetros y variables de estado para el modelo de simulación del sistema de reacción fueron tomados como base a partir de lo reportado en la literatura por Che- Galicia et. al (2015). Las condiciones de operación y datos cinéticos del sistema de reacción en el simulador Aspen plus fueron agregadas acordes al sistema de reacción ODH-Et.

Se realizó un diagrama de proceso del sistema de reacción de la ODH-Et en Aspen plus v8.8, el cual se validó a partir de lo reportado en la literatura, representando adecuadamente los datos cinéticos reportados con un margen de error mínimo (error porcentual igual al 5%). De acuerdo a los análisis establecidos se observó que una variable crítica a controlar en el proceso es la temperatura de servicio auxiliar, el coeficiente global de transferencia de calor, el flujo de entrada de la mezcla de los componentes al sistema de reacción, la presión, entre otros, por mencionar los más importantes. De igual forma se estudiaron las correlaciones entre las variables de operación y variables críticas del sistema de reacción. Finalmente se propuso un proceso de separación para la recuperación del producto principal (etileno, C_2H_4). Todo esto con la finalidad de conocer en mayor profundidad el comportamiento y flexibilidad del sistema de reacción.

Oficio No. FIQ/AC/957/20 18 Asunto: Registro de Tema de Tesis

C. ERI KA GABRIE LA NO LASCO HICKMAN PASANTE DE LA LICENCIATU RA EN INGENIERIA QUI MICA PRESENTE:

Por medio del presente me permito informarle, de la aprobacion del Registro de Tema de Tesis de la Licenciatura en Ingenierla Quimica cuyo titulo es el siguiente:

"MODELO DE SI MULACION PARA LA DESHIDROGENACION OXIDATIVA DEL ETANO EN US CATALIZ A DOR MoVTeN bO/TiO,"

Con el siguiente contenido:

INTROD UCC ION

CAPITU LO 1	AN"FECEDENTES
CAPITULO 2	M ETODOLOCI IA
CAPITULO 3	RESU LTADOS Y DISCUS ION

CONCL USIONES BIBLIOGRA FI A

Directora de Tests: Dra. Mayra Ruiz Reyes Co-Director de Tesis: Dr. Ganialiel Che Galicia

Lo cual me permito comunicarle part su conocinzieizto y fines consigtiientes aclarando que la vigencia de este tenaa serâ UNICAM ENTE POR UN ANO.

C.c.p. Directora de Tesis: Dra. Mayra Ruiz Reyes C.c.p. Co-Director de Tesis Dr. Gamaliel Che Galicia C.c.p. Archivo.

> Facultad de Ingenierfa gufmica

As: San Claudines/n, Col. San Manuel, (Giudad) Universitaria, Puebla, Ruc CP.P.72590 01 (222) 229%5600 Exts. 7250 y 7251

AGRADECIMIENTOS

Gracias a todas las personas que participaron en el desarrollo y elaboración de esta tesis. Principalmente gracias a Dios por darme la fortaleza y sabiduría para poder realizar cada una de las tareas ejercidas durante el desarrollo de este trabajo, y que, a pesar de las dificultades, las cuales fueron todo un reto para mí, me dio paciencia y perseverancia para el logro de esta meta tan importante en mi vida. Él sabe cuán importante es este gran logro en mi vida y que a pasar de las muchas dificultades en la universidad, él siempre estuvo apoyándome y confiando en mí, gracias mi Dios por tu gran amor infinito. Agradezco también a mis padres Patricia Hickman y Eloy Nolasco por su inmenso apoyo al logro de esta meta, por ser mi pilar en todo momento, por apoyarme en cada una de mis decisiones, en mi licenciatura y en esta tesis, y que hoy es posible gracias a ustedes. Gracias padres por estar siempre atentos y al pendiente de mí, viendo que nada me faltase para la realización de mis estudios, gracias por todo su amor, consejos y regaños, gran parte de la persona que hoy soy, se los debo a ustedes. Padres les dedico esta tesis, porque esta meta cumplida también es gracias a ustedes. Les debo mucho y espero recompensarlos siempre con todo mi amor y orgullo para ustedes, los amo inmensamente. También agradezco a mis hermanos que siempre me apoyaron, motivaron y estuvieron conmigo en los buenos y en los no tan buenos momentos, por comprenderme y quererme siempre: Sandra Bolaños, Jaqueline Bolaños, Gustavo Bolaños, Cesar Nolasco y Roxana Nolasco; gracias por su amor infinito hermanos, son lo mejor que me ha pasado, los mejores hermanos, los amo a todos con todo mi corazón, quiero decirles que de ustedes también he aprendido mucho, cada uno es muy especial e importante en mi vida, gracias por su alegría y por compartir su felicidad conmigo, los amo.

Gracias también a mi novio Armando, por su gran comprensión y apoyo en mi vida, por su motivación para ser una mejor persona cada día y dar lo mejor de mí en todo momento, gracias por incentivarme a aprender cosas nuevas, eres una persona muy especial e importante en mi vida, te quiero cielo. Gracias a mis grandes amigas del alma que me han acompañado en un largo trayecto de mi vida, sé que ustedes también se han esforzado para obtener este gran logro en sus vidas. Brenda Moreno, mi gran amiga del alma que siempre estuvo apoyándome, dándome ánimos y consejos para decirme: ¡si se puede!, acompañado de un fuerte abrazo; hemos compartido grandes y hermosos momentos juntas, nuestros viajes universitarios nunca los olvidaré, te amo amiga; Diana Mejía, una persona en la que siempre puedo confiar, una amiga inigualable, gracias por todos los momentos compartidos Dianita, te quiero mucho; Samantha Escandón mi amiga de la infancia, parece q fue ayer cuando aplicábamos el examen para entrar a la secundaria, grandes trayectos hemos pasado juntas, gracias Sammy por ser tan linda amiga, quiero que sepas que eres digna de admiración para siempre seguir adelante, te quiero mucho Sammy; Ivet Martínez, nuestra amistad es muy especial Ivet, porque se forjó en los momentos más difíciles de nuestras vidas, una gran y verdadera amiga, te quiero por siempre amiga, Ivetsita. Gracias a todas por su gran apoyo, alegría, tristezas, enojos, de verdad esto no hubiese sido igual sin ustedes chicas, las aprecio mucho y valoro bastante su amistad, cada una tiene un lugar muy importante en mi corazón.

Gracias a mis grandes compañeros de la universidad, Carlos y Marco, con los cuales compartí grandes momentos de estudio y ánimos. Gracias Carlos por compartirme siempre de tu beca alimenticia y gracias Marco por explicarme siempre cosas que no llegaba a comprender del todo en la universidad. Gracias a los dos por grandes momentos de risa y algunos de preocupación que pasamos juntos, les deseo mucho éxito chicos, siempre los llevaré en mi corazón.

Debo un gran agradecimiento en especial a la Dra. Mayra Ruíz Reyes por permitirme realizar la tesis con usted, por su gran apoyo, tiempo y dedicación para el logro de este trabajo. Sé que no fue fácil maestra, pero de verdad le agradezco infinitamente todo lo enseñado y su gran paciencia conmigo, porque definitivamente esta tesis no hubiese sido posible sin su gran apoyo y comprensión; gracias por todos sus consejos y ánimos. Aunque el camino no ha sido fácil, he aprendido mucho con usted, sobre todo a siempre dar lo mejor de mí y una sonrisa aunque halla demasiado trabajo. Dra. Mayra, de verdad gracias por compartir su conocimiento conmigo, sé que aún me falta bastante por aprender, pero

trabajaré en ello para el futuro logro de mis demás objetivos. Dra. Mayra también quiero decirle que la admiro por su gran trabajo universitario con los alumnos; puedo decir que es una maestra ejemplar y deja huella en los estudiantes. Gracias también mi co-asesor de Tesis Dr. Gamaliel Che-Galicia, por su gran dedicación, por compartir su trabajo conmigo y por todo lo enseñado; gracias por su tiempo, que sin usted este trabajo no hubiese sido posible. Gracias a mis sinodales el Dr. Sampieri y el Dr. Pacheco, por ser parte de mi jurado en este trabajo de tesis, por sus observaciones y correcciones para que este trabajo fuera lo mejor posible presentado, infinitas gracias.

Gracias a todos mis profesores de la licenciatura que me enseñaron grandes cosas tanto de la licenciatura como de vida, en especial quiero agradecer a la Dra. Mirna, al Mtro. Lucio, al Dr. Adan Luna, al Mtro. Eziquio, al Dr. Galicia, a la Dra. Mayra, y al colega, quiero que sepan que los admiro mucho y que han dejado huella en mi vida, gracias.

Gracias a todos y cada uno de ustedes, por formar parte de esta gran meta. Sé que aún hay un largo camino por recorrer, que mejor que recorrerlo a lado de tu familia y amigos, personas que aprecias y amas. Los quiero a todos con todo mi corazón y quiero que sepan que yo también aquí estoy para apoyarlos en cualquier momento, les deseo mucho éxito.

GRACIAS.

"Esta investigación fue realizada gracias al apoyo del consejo de Ciencia y Tecnología del estado de Puebla"

ÍNDICE

FACULTAD DE INGENIERÍA QUÍMICA	2
INTRODUCCIÓN	1
CAPITULO1 GENERALIDADES	3
1.1 GENERALIDADES	4
1.2 PLANTEAMIENTO DEL PROBLEMA	.26
1.3 JUSTIFICACIÓN	.26
1.4 OBJETIVOS	. 27
1.4.1 OBJETIVO GENERAL	. 27
1.4.2 OBJETIVOS ESPECÍFICOS	.27
1.4 HIPÓTESIS	. 27
CAPITULO2METODOLOGÍA	.28
2.1 DISEÑO CONCEPTUAL DEL SISTEMA DE REACCIÓN	. 30
2.1.1 CARACTERIZACIÓN DEL SISTEMA	. 30
2.2 MODELACIÓN Y SIMULACIÓN DEL SISTEMA DE REACCIÓN	.41
2.3 CARACTERIZACIÓN DEL SISTEMA DE REACCIÓN ODH-ET EN ASPEN PLUS V8.8	.42
2.4 ANÁLISIS PARMÉTRICO DEL SISTEMA DE REACCIÓN	.46
2.5 MODELACIÓN Y SIMULACIÓN DEL PROCESO DE SEPARACIÓN	.49
CAPITULO 3 RESULTADOS	58
3.1 RESULTADOS DEL DISEÑO CONCEPTUAL DEL SISTEMA DE REACCIÓN	59
3.2 RESULTADOS DEL SISTEMA DE REACCIÓN EN ASPEN PLUS V8.8	. 62
3.3 RESULTADOS DEL ANÁLISIS PARAMÉTRICO	. 67
3.4 CORRELACIONES DEL SISTEMA DE REACCIÓN ODH-ET	. 82
3.5 PROCESO DE SEPARACIÓN	. 84
CAPITULO4CONCLUSIONES	.89
4.1 CONCLUSIÓN	.90
4.2 BIBLIOGRAFÍA	.91
APÉNDICE I: Propiedades fisicoquímicas de los componentes que participan en el sistema de reacción ODH-Et sobre el catalizador MoVTeNbO/TiO2	.95
APÉNDICE II: Elección del modelo termodinámico	.96

APÉNDICE III Análisis de sensibilidad realizados al sistema ODH-Et en aspen plus	
V8.8	97
APÉNDICE IV. Corrientes del sistema de reacción ODH-Et	98

ÍNDICE DE TABLAS

Tabla 1. Principales propiedades físicas y químicas del etileno (eteno). (Mexicanos, 2006) 5
Tabla 2. Producción de principales productos petroquímicos reportados por Pemex9
Tabla 3. Compuestos petroquímicos elaborados en el complejo petroquímico Morelos y
Cangrejera, Pemex
Tabla 4. Clasificación de catalizadores y principales efectos catalíticos. 16
Tabla 5. Principales características de los catalizadores. 17
Tabla 6. Síntesis de catalizadores empleados en la ODH-Et. 18
Tabla 7. Parámetros cinéticos del sistema de reacción de la DHO-E32
Tabla 8. Exponente para el término de adsorción y fuerza impulsora, para cada reacción. 35
Tabla 9. Condiciones de operación y dimensiones del catalizador y reactor
Tabla 10. Heurísticas tomadas en cuenta para el sistema de reacción de ODH-Et40
Tabla 11. Propiedades de transferencia de calor del catalizador MoVTeNbO42
Tabla 12.Diferentes Mezclas de vapor (% mol) de los componentes del sistema de reacción.
Tabla 13. Compuestos condensables y no condensables del ODH-Et 49
Tabla 14. Diagramas de equilibrio de pares de componentes del sistema de reacción ODH-
Et
Tabla 15. Heurísticas para la síntesis del proceso de separación
Tabla 16. Análisis de sensibilidad para el tanque Flash SEP1 y SEP254
Tabla 17. Refrigerantes
Tabla 18. Factor pre-exponencial de Arrhenius. 59
Tabla 19. Ecuaciones de velocidad de reacción en función de presiones parciales
Tabla 20. Factores A y B para el término de adsorción
Tabla 21. Factores A y B, para el término de la fuerza impulsora60
Tabla 22. Análisis de sensibilidad 1 para la validación del modelo del sistema de reacción
ODH-Et realizado en Asen plus V8.863
Tabla 23. U, XC2H6 y TMAX a diferentes TSA64
Tabla 24. Análisis de sensibilidad 2 para la validación del modelo del sistema de reacción
ODH-Et realizado en Asen plus V8.865

Tabla 25 Análisis de sensibilidad 1 realizado al sistema de reacción ODH-Et sobre al
catalizador MoVTeNbO/TiO ₂ en Asen plus V8.867
Tabla 26. Análisis de sensibilidad 2 realizado al sistema de reacción ODH-Et sobre al
catalizador MoVTeNbO/TiO2 en Asen plus V8.869
Tabla 27. U y TMAX para distintos valores de TSA.71
Tabla 28. Valores generados en Aspen Plus V8.8 del análisis de sensibilidad 2.72
Tabla 29. Análisis de sensibilidad 3 realizado al sistema de reacción ODH-Et sobre al
catalizador MoVTeNbO/TiO ₂ en Asen plus V8.872
Tabla 30. Análisis de sensibilidad 4 realizado al sistema de reacción ODH-Et sobre al
catalizador MoVTeNbO/TiO ₂ en Asen plus V8.8. Para diferentes presiones $P=[1, 2, 3, 4 y]$
5] atm
Tabla 31. Resultado de análisis de sensibilidad 6 75
Tabla 32. Diferentes composiciones de mezcla en la corriente de alimentación. 76
Tabla 33. Análisis de sensibilidad 5 realizado al sistema de reacción ODH-Et sobre al
catalizador MoVTeNbO/TiO2 en Asen plus V8.8; Para diferentes composiciones de mezcla
en la corriente de alimentación76
Tabla 34. Resultados del análisis de sensibilidad 5
Tabla 35. Análisis de sensibilidad 6 realizado al sistema de reacción ODH-Et sobre al
catalizador MoVTeNbO/TiO ₂ en Asen plus V8.8
Tabla 36. Resultados del análisis de sensibilidad 8. 81
Tabla 37. Porcentajes (flujo molar, kg/h) en las corriente del proceso de separación en Aspen
plus v8.8
Tabla 38. Condiciones de operación del tren de separación para la ODH-ET

ÍNDICE DE FIGURAS

Figura 1. Etileno como intermediario en la producción de gran variedad de compuestos
químicos, su manufactura y principales industrias de consumo final. Fuente: (Petroleo, 2015)
Figura 2. Ángulos de separación de los enlaces del compuesto etileno y orbitales de enlace
sigma y enlace pi del etileno. Fuente: (Wade, 2012)
Figura 3. Consumo mundial de etileno en el año 2018. Fuente: (Markit, 2019)7
Figura 4. Estimación de principal materia prima para la producción de etileno en el año
2016 y 2021. Fuente: (Markit, 2016)
Figura 5. Suministro de etileno generado a partir de fuentes no convencionales. Fuente:
(Markit, 2016)
Figura 6. Capacidad global de producción de etileno y aumento de la demanda anual.
Fuente: (Markit, 2016)
Figura 7. Complejos petroquímicos instalados en México. Fuente: (SENER, 2019) 10
Figura 8. Deshidirogenación oxidativa de etano con sus reacciones secundarios14
Figura 9 Diagrama de dos dimensiones de la celda unitaria MoVTeNbOx de la fase
cristalina M1 de su plano basal [001] con 13 sitios de cationes etiquetados. Donde los centros
de los sitios activos están compuestos por las posiciones de metal S2-S4-S7 (rojo y verde),
que se encuentra entre las células unitarias. Los poliedros de diferentes colores indican las
composiciones según la etiqueta. Fuente: (Melzer, et al., 2016)
Figura 10. Etapas necesarias para la catálisis heterogénea. Fuente: (Lechuga, 2008)23
Figura 11. Clasificación tipos de reactores químicos
Figura 12. Lecho empacado. Fuente: (Fogler, 2008)25
Figura 13. Síntesis de la metodología para el modelo de simulación del sistema de reacción
de ODH-Et sobre el catalizador MoVTeNbO/TiO ₂
Figura 14. Diagrama de bloques para la expresión algebraica de las ecuaciones de velocidad
de acuerdo a la forma que Aspen V8.8 requiere y cálculo de los factores A y B
Figura 15. Gráfico de k (constante de Arrhenius) vs T (perfiles de temperatura de reacción
(K)) del sistema de reacción ODH-Et sobre el catalizador MoVTeNbO/TiO2. Fuente: (Che-
Galicia, Martínez, López, & Araiza, 2015)

Figura 16. Perfiles de temperatura. Predicciones del modelo del reactor cuando TSA aumenta
a 40 $^\circ$ C en un cambio de rampa con una relación molar de entrada C_2H_6 / O_2 / N_2
= 9/7/84
Figura 17. (a) Perfiles de conversión y rendimiento a TSA = 400 $^{\circ}$ C; (b) Perfiles de
conversión y rendimiento a TSA = $440 \circ C$; (c) Perfiles de conversión y rendimiento a TSA
= 480 $^{\circ}$ C. Predicciones del modelo del reactor cuando TSA aumenta a 40 $^{\circ}$ C en un cambio
de rampa con una relación molar de entrada C_2H_6 / O_2 / N_2 = 9/7/84. Fuente: (Che-Galicia,
Martínez, López, & Araiza, 2015)45
Figura 18. Diagrama de bloques del proceso de separación para la recuperación del C_2H_4 53
Figura 19. Diagrama del proceso de separación para la recuperación de C_2H_4 en Aspen plus
v8.8
Figura 20. Análisis de sensibilidad del tanque flash SEP155
Figura 21. Análisis de sensibilidad del tanque Flash SEP2
Figura 22. Análisis de sensibilidad del tanque Flash SEP2 del consumo energético57
Figura 23. Diagrama de bloques del proceso del sistema de reacción DHO-Et61
Figura 24. Diagrama de flujo del sistema de reacción ODH-Et sobre el catalizador en Aspen
plus V8.8
Figura 25. Longitud del reactor (m) vs la temperatura en el sistema de reacción (°C), para
tres distintos valores de TSA= 400, 440 Y 480 °C65
Figura 26. Gráfico 1-Conversión y rendimiento de los componentes (C ₂ H ₄ , CO ₂ , CO y H ₂ O)
a lo largo del reactor. Líneas continuas: datos obtenidos en Aspen Plus V8,8 y puntos: datos
reportados en la literatura por Che-Galicia et al.(2015). Grafico a) es a una TSA= 400
$^{\circ}$ C, para el gráfico b) es a una TSA= 440 $^{\circ}$ C y para el gráfico c) es a una TSA= 480 $^{\circ}$ C. 66
Figura 27. Grafico a) conversión del etano para diferentes valores de U kcal/h-m ² -k, b)
TMAX °C para diferentes valores de U kcal/h-m ² -k. Ambos gráficos para tres distintos
valores de TSA distintas TSA= 400, 440 y 480 °C68
Figura 28. Grafico a) TMAX °C para distintos valores de TSA °C, b) conversión de etano y
oxígeno (C2H4 y O2) para distintos valores de TSA °C y c) rendimiento de etileno, dióxido
de carbono, monóxido de carbono y agua (C ₂ H ₄ , CO ₂ , CO y H ₂ O) para distintos valores de
TSA °C

Figura 29. Perfiles de temperatura TRX °C a lo largo del reactor para distintos valores de
TSA °C
Figura 30. Grafico a) conversión del etano (XC2H6), para distintos valores de TSA °C. En
el b) se presenta el rendimiento del etileno para distintos valores de TSA °C. Ambos gráficos
para distintas presiones en el sistema de reacción, P= [1, 2, 3, 4 y 5] atm74
Figura 31. Grafico a) TMAX °C en el reactor para distintos valores de TSA °C, para el b)
conversión del etano para diferentes valores de TSA °C y c) rendimiento del etileno para
distintos valores de TSA °C. Se emplearon cuatro tipos de mezclas distintos de acuerdo a la
relación molar en la composición de los componentes (% mol), en la corriente de
alimentación ALM. 1/20.79/78.21, 9/19.11/71.89, 18/17.22/64.78 y 40/12.6/47.4 para la
Mezcla 1, Mezcla 2, Mezcla 3 y Mezcla 4 respectivamente
Figura 32. Grafico a) perfiles de temperatura TRX °C a lo largo del recator, para los
siguientes caudales totales en la corriente ALM. F= 2 m ² /h, 4 m ² /h, 6 m ² /h, 8 m ² /h y 10 m ² /h,
b) tiempo de residencia (seg) de los componenetes del sistema de reacción, para distintos
caudales toales en la corriente de ALM
Figura 33. Comportamiento térmico ante la variación en la temperatura del servicio auxiliar
(T _{SA})
Figura 34 T _{MAX} _T _{SA} _Conversión
Figura 35. A) Efecto el U_D en el consumo de etileno a lo largo del reactor y b) Efecto la
temperatura del reactor en la selectividad Etileno/CO ₂
Figura 36. Diagrama del proceso de separación para la recuperación de C ₂ H ₄ en Aspen plus
v8.8
Figura 37. Diagrama del sistema de reacción y separación para la obtención del C2H4
mediante la deshidrogenación oxidativa del etano sobre el catalizador MoVTeNbO/TiO288

INTRODUCCIÓN

En la industria petroquímica se lleva a cabo la transformación del gas natural y derivados del petróleo en materias primas que representan la base de cadenas productivas. Entre los compuestos petroquímicos básicos, se encuentran el etano, metano, pentano, propano, butanos, naftas, entre otros y dentro de los compuestos petroquímicos no básicos se tienen al amoniaco, benceno, dicloroetano, etileno, metanol, óxido de etileno, paraxileno, propileno, tolueno, xilenos, entre otros. Actualmente se considera a la industria petroquímica como una de las industrias más importantes a nivel mundial, debido a que forma parte del crecimiento y desarrollo de cadenas industriales como la textil, automotriz, electrónica, de construcción, plásticos, alimentos, fertilizantes, farmacéutica, química, entre otros. Debido al gran papel que tiene la industria petroquímica a nivel mundial, es importante que ésta se fortalezca para que siga abasteciendo a la variedad de industrias con los insumos que requieren. (Petroleo, 2015)

El etileno es un hidrocarburo de gran importancia a nivel mundial debido a que es utilizado como intermediario en la producción de diversos compuestos químicos y debido a su amplio uso, el etileno es usado como un punto de referencia para el desempeño de la industria petroquímica en general. Actualmente la producción de etileno se lleva a cabo mediante tres procesos químicos principales: craqueo de vapor, desintegración catalítica en lecho fluidizado y deshidrogenación directa de etano. Sin embargo tales procesos para la producción de etileno requieren de alto consumo energético, generan gran cantidad de subproductos nos deseados y no son amigables con el medio ambiente, entre otros. Ante la necesidad del desarrollo de un nuevo proceso para la producción de etileno debido a la alta demanda, es necesario desarrollar un proceso con menor requerimiento energético, amigable con el medio ambiente y que genere pocos subproductos no deseados en comparación con los procesos convencionales. Recientes investigaciones catalogan a la deshidrogenación oxidativa de etano (ODH-Et) como un proceso alternativo y atractivo para la producción de etileno. Esto debido a que la ODH-Et, es un proceso exotérmico, sin limitaciones termodinámicas, amigable con el medio ambiente y la cantidad de subproductos no deseados son pocos. Sin embargo, es importante mencionar que este proceso actualmente aún se encuentra en continuo estudio.

En la búsqueda de herramientas que permitan estudiar diversos escenarios del sistema de reacción para el diseño y optimización del proceso de ODH-Et; en este trabajo de tesis se desarrolla un modelo de simulación del sistema de reacción ODH-Et sobre el catalizador MoVTeNbO₂/TiO2 en Aspen Plus V8.8, con la finalidad de obtener un mayor conocimiento de este proceso para su futura implementación.

El presente trabajo de tesis está conformado por cuatro capítulos, comprendidos de la siguiente manera: El capítulo 1 aborda las generalidades relacionadas al etileno, para introducir y ubicar al lector en el contexto del tema, en donde a partir de una revisión bibliográfica se describen las características y usos del etileno, producción de etileno en México, consumo y flujo de etileno en el mundo, proceso convencionales para la producción de etileno, diferentes catalizadores usados en el proceso ODH-Et para la producción de etileno, diferentes considerados el planteamiento del problema, justificación, objetivo general, objetivos específicos e hipótesis de este trabajo de tesis.

El capítulo 2 presenta una descripción detallada de la metodología, con la finalidad de presentar la secuencia de pasos que se abordaron para el cumplimiento de los objetivos específicos de este trabajo de tesis. En este se describe el desarrollo del diseño conceptual y caracterización del sistema de reacción, mecanismo de reacción, condiciones de operación, heurísticas de diseño, modelación y simulación en Aspen plus V8.8, análisis de sensibilidad y paramétrico del sistema de reacción y así como también modelación y simulación del proceso de separación.

El capítulo 3, conforma el apartado de resultados generados a partir de lo descrito en la metodología, así como también discusiones a partir de los resultados obtenidos. Esto con la finalidad de caracterizar el modelo de simulación del sistema de reacción ODH-Et sobre el catalizador MoVTeNbO/TiO₂ en Aspen plus V8.8, mediante la determinación del efecto de la temperatura, presión, flujo, tiempo de retención hidráulica sobre la sel y conversión global del sistema de reacción, correlaciones, así como también el requerimiento energético, con la finalidad de evaluar la flexibilidad del proceso.

Y finalmente en el capítulo 4, se presentan las conclusiones generales obtenidas sobre este trabajo de tesis y la bibliografía consultada para el desarrollo de este trabajo de tesis.

CAPITULO 1 GENERALIDADES

El actual capítulo aborda las generalidades del etileno, tales como sus propiedades químicas, principales usos, producción de etileno en México, consumo y flujo de comercio de etileno en el mundo, procesos convencionales para la producción de etileno, el proceso de deshidrogenación oxidativa de etano (ODH-Et) como posible proceso para la producción de etileno, tipos de catalizadores utilizados en el proceso ODH-Et, entre otros aspectos de gran relevancia para este trabajo de tesis.

Así también, se presenta el planteamiento del problema, la justificación, objetivo general y específicos planteados para el desarrollo de este trabajo de tesis.

1.1 GENERALIDADES

Etileno

El etileno (C_2H_4) es un alqueno de gran importancia a nivel mundial, debido a que es un hidrocarburo muy utilizado en la industria química como intermediario en la producción de una amplia gama de productos químicos. Del cual el 62% del consumo total de etileno producido va destinado a la producción de polietileno, el resto es usado para la producción de compuestos químicos orgánicos como el etanol, ácido acético, óxido de etileno, etilbenceno, etilenglicol, cloruro de vinilo, como hormona vegetal para acelerar el proceso de maduración en los frutos, entre otros. (Wade, 2012) Debido a su amplio uso, el etileno es usado como un punto de referencia para el desempeño de la industria petroquímica en general. (Petroleo, 2015) En la Figura 1 se muestra la importancia del etileno como intermediario para la producción de otros compuestos químicos, su manufactura y consumo final a nivel industrial.

Figura 1. Etileno como intermediario en la producción de gran variedad de compuestos químicos, su manufactura y principales industrias de consumo final. Fuente: (Petroleo, 2015)

Características del etileno

El etileno es un hidrocarburo con doble enlace carbono-carbono, lo que le da la propiedad de ser un compuesto reactivo y que se convierte fácilmente en otros grupos funcionales. (Wade, 2012) Algunas de las características fisicoquímicas del etileno se muestran en la Tabla 1.

Fórmula química	CH ₂ =CH ₂ o C ₂ H ₄				
	H C=C H				
Estructura molecular	HH				
Estado físico	Gas				
Color/olor	Incoloro con aroma y sabor dulce				
Peso molecular	28.05 gr / grmol				
Punto de ebullición a 1 atm	-103 °C				
Punto de fusión	-169.2 °C				
Temperatura de autoignición	490 °C				
Polaridad	Polar				
Solubilidad	Ligeramente soluble en agua, alcohol y etil éter.				
Flamalibilidad	Altamente flamable y explosivo				
Límite de explosividad en aire	superior 3% en volumen e inferior 32% en volumen				
Transportación	Mediante ducto o buquetanque				

Tabla 1. Principales propiedades físicas y químicas del etileno (eteno). (Mexicanos, 2006)

El enlace doble carbono-carbono en un hidrocarburo, tiene una energía aproximada de 611 kJ/mol, energía de disociación de un enlace doble, por otro lado la energía de un enlace sencillo es de aproximadamente 347 kJ/mol, energía de disociación de un enlace sigma, por lo que la energía de disociación de un enlace pi es de 264 KJ/mol, un valor menor que la energía sigma, indicador de que el enlace pi es mucho más reactivo que el enlace sigma. En el etileno, cada uno de los enlaces sigma del carbono-hidrógeno se forman por el traslape de un orbital híbrido sp2, correspondiente a ángulos de enlace de aproximadamente 120 °. El enlace pi del etileno, se forma por el traslape de los orbitales p

no híbridos de los átomos de carbono con hibridación sp2. En la Figura 2 se muestra el ángulo que existe entre los enlaces del etileno C-H y C=C y los orbitales de enlace sigma y enlace pi del etileno. (Wade, 2012)

Figura 2. Ángulos de separación de los enlaces del compuesto etileno y orbitales de enlace sigma y enlace pi del etileno. Fuente: (Wade, 2012)

Las reacciones químicas del etileno con importancia comercial son: adición, alquilación, halogenación, hidroformilación, hidratación, oligomerización, oxidación y polimerización.

Etileno en el mundo

En los últimos años se estima que el consumo de etileno ha aumentado a una tasa promedio de 4% por año, esto por el crecimiento en el noreste de Asia, América del norte y Medio Oriente, además de la alta demanda de producción de los compuestos derivados de este. (Markit, 2016)

En la Figura 3 se presentan los principales países de consumo de etileno a nivel mundial para el año 2018. Donde se observa que los mayores consumidores de etileno son Estados Unidos, medio este, China, Europa oxidental y el Sudeste de Asia; mientras que el consumo de etileno es de menor proporción en Corea del sur, subcontinente Indio, Japón, Canadá, Taiwan, Ameria del sur, estados Bálticos y otros.

Figura 3. Consumo mundial de etileno en el año 2018. Fuente: (Markit, 2019)

La producción de etileno para el año 2016 se aproxima que fue de 146, 093 miles de toneladas métricas y se estima que para el año 2021 será de 174,663 miles de toneladas métricas, por lo que se espera un incremento en su producción. (Markit, 2016)

Actualmente el etileno se produce principalmente por craqueo de vapor, de diversas corrientes de hidrocarburos, en mayor grado gasóleos, nafta, GLP y gas natural y, en menor grado, de etano. (Che-Galicia et al., 2014) De acuerdo a estádisticas de (Markit, 2016) (Figura 4) Se espera que habrá una disminución en la materia prima principal para la producción de etileno (nafta y LGP) y habrá un incremento en la producción de etileno a partir del etano y otros

De igual forma, estadísticas de Markit, (2016), Figura 5 presenta un gráfico representante del suministro de etileno a nivel mundial de fuentes no tradicionales, es decir distintos procesos al craqueo de vapor, para la producción de etileno; del cual reporta que la producción de etileno a partir de fuentes no convencionales incrementará para el año 2021.

Figura 5. Suministro de etileno generado a partir de fuentes no convencionales. Fuente: (Markit, 2016).

En la Figura 6 se presenta la capacidad global de producción de etileno y demanda anual en el periodo 2010-2021 para el norte de América, medio este, oeste de Europa, Asia y otros; en el cual se observa un incremento en la demanda de etileno para el año 2020 y 2021.

Figura 6. Capacidad global de producción de etileno y aumento de la demanda anual. Fuente: (Markit, 2016).

Producción de etileno en México

Se estima que la producción mundial de etileno es de aproximadamente 170 millones de toneladas al año, de los cuales 1.2 millones de toneladas al año son producidas en México. (Petroleo, 2015) En la Tabla 2 se muestra la elaboración de productos petroquímicos (miles de toneladas), de Pemex, del año 2014 a 2019; en la cual se observa que el etileno es uno de los compuestos de mayor producción en todos los años.

Año/Producción (Mtd)	2014	2015	2016	2017	2018	2019 ^b
Amoniaco	869	575	533	500	151	0
Benceno	118	83	47	19	27	8
Estireno	122	101	32	0	0	0
Etileno	988	917	758	579	583	88
Óxido de etileno	351	338	294	218	218	26
Polietileno de alta densidad	157	135	97	43	47	8
Polietileno de baja densidad	238	196	148	99	146	17
Polietileno lineal de baja densidad	192	235	228	219	181	38
Propileno ^a	471	455	347	230	170	24
Tolueno	144	117	87	53	47	23
Otros	7.668	6.788	6.398	5.465	4.377	650

Tabla 2. Producción de principales productos petroquímicos reportados por Pemex.

Mtd: miles de toneladas a. Excluye la producción de propileno de la planta purificadora del CPQ. Morelos, cuya carga proviene de la producción del Sistema Nacional de la Refinación. b. solo para los meses de enero y febrero. Fuente: (PEMEX, 2019)

En la Figura 7 se observan los complejos petroquímicos instalados en México. De los cuales la producción de etileno está a cargo de Pemex Etileno, conformado por el complejo petroquímico Morelos ubicada en Allende, Veracruz y el complejo petroquímico Cangrejera ubicada en la carretera Coatzacoalcos, Villahermosa, Veracruz.

La producción de etileno y de otros compuestos en Pemex Etileno se muestra en la Tabla 3, donde se observa que le producción de etileno en ambos complejos petroquímicos es mayor comparada con los otros compuestos químicos. En México el etileno se produce mediante el proceso de pirolisis de etano, operando el proceso Lummus.

Figura 7. Complejos petroquímicos instalados en México. Fuente: (SENER, 2019)

Empresa								
productiva	Complejo	Producto	2013	2014	2015	2016	2017	2018*
subsidiaria	Petroquímico		(Mtd)	(Mtd)	(Mtd)	(Mtd)	(Mtd)	(Mtd)
		Etileno	1.5	13	12	1.14	0.78	0.96
	Morelos	Óxido de etileno	0.7	0.6	0.6	0.63	0.45	0.42
		Polietileno Alta densidad	0.5	0.4	0.4	0.26	0.12	0.10
		Acrilonitrilo	0.1	0.1	0.1	0.07	0	0
		Glicoles	0.5	0.4	0.4	0.43	0.30	0.34
		Etileno	1.1	1.4	1.3	0.93	0.81	0.67
Pemex Etileno	Cangrejera	Óxido de etileno	0.3	0.3	0.3	0.17	0.16	0.19
		Polietileno Baja Densidad	0.7	0.7	0.5	0.41	0.26	0.41
		Glicoles	0.04	0.04	0.04	0.03	0.02	0.03

Tabla 3. Compuestos petroquímicos elaborados en el complejo petroquímico Morelos y Cangrejera, Pemex.

SENER (2019) Sistema de Información Energética

Procesos convencionales de producción de etileno

A continuación se presenta una pequeña descripción de los principales procesos de producción de etileno:

1. Proceso de craqueo de vapor.

La producción de etileno se lleva a cabo principalmente mediante el proceso de pirolisis o craqueo térmico en presencia de vapor. Es un proceso químico de alto consumo de energía debido a que es un proceso endotérmico. En primera instancia, entra una corriente de hidrocarburos en la sección de convección y se calienta por intercambio de calor con los gases de combustión, seguido de mezclar con vapor para un incremento mayor de temperatura (temperatura de craqueo anticipada) de 500-680 °C dependiendo de la materia prima. Después la corriente ingresa a un reactor tubular, donde se lleva a cabo un incremento de temperatura igual a T= 750-875 °C, en el cual los hidrocarburos se fragmentan en moléculas más pequeñas, en un tiempo de reacción igual a 0.1-0.5 s. Los productos de reacción salen a una temperatura de 800-850°C y se enfrían a 550-650°C en 0.02-0.1s para evitar la degradación en los productos altamente reactivos, después son separados en los productos deseados mediante etapas de tratamiento químico, ya que el gas craqueado contiene metano, acetileno, propano, butano, buteno, benceno, tolueno y componentes más pesados. (Zimmermann & Walzi, 2012) El rendimiento del etileno en este proceso es de aproximadamente (40-45 %). Debido a las altas temperatura que este proceso requiere, se generan altas emisiones de CO₂, el cual es considerado un contaminante del medio ambiente, ya que es un compuesto que contribuye al efecto invernadero. El crecimiento anual de la producción mundial de etileno está dentro de una rango de 6-5 X 10⁶ ton/a, lo que traduce emisiones adicionales de CO_2 de $6-9X 10^6$ ton/a (ton/a = toneladas/anuales) (Zimmermann & Walzi, 2012).

2. Proceso de desintegración catalítica en lecho fluidizado (FCC).

La desintegración catalítica en lecho fluidizado, (FCC por sus siglas en ingles Fluid Catalytic Cracking) es uno de los procesos más utilizados en la industria en la refinación del petróleo para la obtención de gasolina de alta calidad como producto principal y se generan otros subproductos como el gas LP, aceite cíclico ligero y pesado y el gas seco (incluye al metano, etano y etileno). Es un proceso endotérmico, con temperaturas de reacción en un intervalo de 470 a 510 °C, con temperaturas del aceite de alimento desde 315 a 450 °C y temperaturas de salida del regenerados de 600 a 680 °. Dada la alta demanda de olefinas ligeras se ha trabajado en el desarrollo de nuevos materiales catalíticos para las unidades FCC, produciendo gas LP compuesto por cerca del 45% de propileo, o gas seco compuesto por cerca del 50 % de etileno. (Valderrama, 2001) Un inconveniente en el proceso de FCC, es que durante la reacción hay formación de coque, el cual se establece sobre las partículas del catalizador, por lo que a medida que la reacción avanza, el catalizador se desactiva progresivamente, disminuyendo su actividad catalítica; por lo que para mantener la actividad del catalizador, es necesario regenerar el catalizador eliminando por combustión con aire el coque y trasladando continuamente al catalizador del reactor al regenerador y nuevamente al reactor. El proceso de regeneración es exotérmica, por lo que algunas unidades se diseñan para utilizar el calor de la regeneración en el sistema de reacción del FCC, dichas unidades se conocen como unidades de recuperación de calor. Las temperaturas del regenerador son controladas cuidadosamente para prevenir la desactivación del catalizador por sobrecalentamiento. Antes de que el catalizador entre al regenerador, el catalizador y los vapores de hidrocarburo se separan mecánicamente y el aceite que permanece en el catalizador se elimina mediante agotamiento con vapor. Los vapores de aceite se llevan por la parte superior a una columna de fraccionamiento para la separación en corrientes que posean los intervalos de ebullición deseados. Los gases de combustión y el catalizador se separan mediante ciclones. El proceso FCC utiliza catalizadores con tamaño de partícula medio alrededor de 50 micrómetros, una forma de partículas muy finas que se comportan como un fluido cuando se airean con vapor. El catalizador fluidizado circula continuamente entre la zona de reacción y la zona de regeneración, y así transfiriendo el calor desde el regenerador al aceite alimento y al reactor. (Gary & Handwerk, 2003)

3. Deshidrogenación directa de etano (DHE).

La deshidrogenación directa de etano (DHE) es endotérmica, por lo que este proceso tiene que llevarse a altas temperaturas, mayores de 800°C, para que los niveles de conversión de etano sean aceptables y el proceso sea rentable. Por otro lado, la DHE heterogénea, es decir catalítica, en la reacción se genera la formación de coque por lo que es un problema ya que desactiva el catalizador.

Debido a las dificultades presentadas en los procesos convencionales para la producción de etileno, en la búsqueda de un nuevo proceso para la producción de etileno dada la alta demanda de éste, el proceso de deshidrogenación oxidativa de etano sobre algún catalizador para la producción de etileno (ODH-Et) muestra ser una alternativa atractiva comparada con los procesos convencionales para la producción de etileno de acuerdo a lo reportado en la literatura. (Che-Galicia et al 2014)

Proceso de Deshidrogenación Oxidativa de Etano (ODH-Et) para la producción de etileno

De acuerdo a lo reportado en la literatura, el proceso catalítico de deshidrogenación oxidativa de etano (ODH-Et), es un proceso prometedor y atractivo en comparación con los procesos convencionales de producción de etileno. Ya que es un proceso exotérmico, requiere bajo consumo energético, es amigable con el medio ambiente, no opera a altas temperaturas, opera a presión atmosférica, no hay generación de coque debido a la presencia de oxígeno que oxida el coque dando a la formación de CO_x y evitando la desactivación del catalizador, no tiene limitaciones termodinámicas y la cantidad de subproductos no deseados (CO, CO₂ y H₂O) es mucho menor en comparación con los procesos convencionales. (Baroi, Gaffney, & Fushimi, 2017)

Las reacciones involucradas en la ODH-Et se llevan a cabo de acuerdo a la Figura 8. El etano se convierte en etileno a través de la deshidrogenación, en donde se puede producir una oxidación total formando CO, CO₂ y H₂O. La reacción de oxidación se origina a partir de la inserción de oxígeno en el enlace CH, en donde pueden involucrarse aniones de oxígeno o átomos de oxígeno electrofílicos, por lo que es importante prevenir la re- adsorción de etileno y separarlo del O₂. (Gartner, Veen, & Lercher, 2013) Sin embargo la selectividad del etileno en el proceso ODH-Et es alta comparada a otros compuestos, ya que el etileno es suficientemente no reactivo hacia la adición de oxígeno, como por ejemplo de deshidrogenación oxidativa de propano es posible, pero los rendimientos de propeno son bajos debido a la estructura alílica que se forma en la extracción de hidrógeno adicional del propeno favorece la oxidación adicional, lo que conduce a subproductos oxigenados y CO_x. (Gartner, Veen, & Lercher, 2013)

Figura 8. Deshidirogenación oxidativa de etano con sus reacciones secundarios.

Actualmente no existe una planta de producción de etileno del proceso de ODH-Et, ya que este proceso se encuentra en continua investigación. Algunos de los inconvenientes principales para la implementación del proceso proceso de ODH-Et para la producción de etileno a nivel industrial es la selección de un catalizador con alta actividad catalítica, alta selectividad catalítica y alta conversión de etano. (Baroi, Gaffney, & Fushimi, 2017), el diseño adecuado del reactor, la inflamabilidad de la mezcla de gases que contiene oxígeno y combustibles en un solo paso como la ODH-Et sugiere de seguridad adicional y la oxidación excesiva de los alcanos y olefinas a CO y CO₂ puede causar puntos calientes en el reactor, reduciendo la selectividad del producto y desactivación del catalizador. (Haribal, Neal, & Li, 2016)

Estudios sobre el modelo cinético representativo de esta reacción ODH-Et, han propuesto distintos formalismos basados en: Eley-riedel (ER), Mars – van Krevelen (MvK), Langmuir – Hinshelwood – Hougen – Watson (LHHW), una combinación de MvK y LHHW (MvK-LHHW) y la ley de potencias (PL); sin embargo este aún se encuentra en estudio ya que este depende en gran parte del tipo catalizador que se emplee para este proceso ODH-Et (Che-Galicia, Quintana-Solórzano, Martínez, Valente, & Castillo-Araiza, 2014)

Catálizador

Un catalizador es una sustancia que aumenta o disminuye la velocidad de una reacción, interviniendo químicamente sobre las etapas intermedias de reacción. Los catalizadores suelen liberarse después de la reacción de una forma químicamente inalterada. Sin embargo, después de un periodo de uso, el catalizador puede sufrir cambios irreversibles como fenómenos de desactivación por factores térmicos o por factores mecánicos. Los catalizadores pueden presentar especificidad, es decir, influyen solo en una reacción o en un grupo de reacciones definidas. Si una reacción química tiene la posibilidad de llevarse a cabo por más de un camino, el catalizador específico suele favorecer un camino frente a los demás y obtener una distribución de productos diferente a la de una reacción no catalítica. La energía de activación en una reacción catalítica es más baja en comparación a una reacción no catalítica, permitiendo una disminución en la temperatura donde la reacción tiene lugar favorablemente y la condición de equilibrio no cambia. Los procesos catalíticos pueden ser homogéneos (fase gas o líquida) o heterogéneos (liquido- solido, gas-sólido). (Perry, Green, & Maloney, 2003)

La catálisis homogénea, es aquella en la cual la fase del catalizador y la fase de los componentes del sistema de reacción, son el mismo (líquido/gas/solida), son procesos muy específicos. Un problema del proceso homogéneo es la dificultad de separar el producto del catalizador; por otro lado la catálisis con sólidos es ampliamente utilizada, debido a que es barato, pueden separarse fácilmente el medio de reacción y el catalizador y suelen ser adaptables a reactores continuos y discontinuos. Sus inconvenientes son la falta de especificidad, temperatura y presión por lo regular elevadas. El catalizador sólido, por lo general es empleado en forma de pastillas porosas en un lecho fijo. (Perry, Green, & Maloney, 2003)

Los componentes principales en los catalizadores sólidos son:

- 1. Sustancias catalíticamente activas o una mezcla de varias de ellas.
- 2. Un soporte de superficie especifico, para resistir elevadas temperaturas.
- 3. Promotores, los cuales refuerzan la actividad del catalizador.

Tipos de catalizadores

Los catalizadores, tratados de manera individual, de una misma clase pueden diferir de manera considerable entre sí, como en actividad, selectividad, resistencia a la desactivación y costos. Existen complicaciones al momento de realizar una clasificación de los catalizadores y tipos de reacciones que favorecen, sin embargo, los principales efectos catalíticos son conocidos. En la Tabla 4 se presenta una clasificación de los catalizadores, de acuerdo a los principales efectos catalíticos.

TIPO DE	CARACTERÍSTICAS		
CATALIZADOR			
	Pertenecen los ácidos comunes (haluros de aluminio y trifluoruro		
	de boro), ácidos naturales (sílice, alúmina, aluminosilicatos,		
Ácidos fuertes s	ulfatos de metales y fosfatos y resinas de intercambio iónico		
	sulfonadas). Estos compuestos catalíticos, pueden donar protones		
	a un reactante actúa como báse débil y sufrir transposisción.		
	Eficaz con metales de álcali dispersados en un soporte sólido o en		
	forma homogénea. Procesos catalizados por iones básicos son: la		
Catálisis básica	isomerización y la oligomerización de olefinas con aromáticos y		
	la hidrogenación de compuestos aromáticos polinucleares.		
	Tienen un potencial intermedio la catálisis ácido-base y los		
	catalizadores metálicos. Se emplea en sistemas de		
Óxidos metálicos,	hidrogenación/deshidrogenación, reacciones catalizadas por		
sulfuros e hidruros	s ácido, como el craqueo y la isomerización. Su actividad de		
	oxidación se relaciona con la posibilidad de dos estados de		
	valencia que permitan al oxígeno		

Tabla 4. Clasificación de catalizadores y principales efectos catalíticos.

TIPO DE						
CATALIZADOR	CARACTERÍSTICAS					
	Los principales catalizadores metálicos industriales se encuentran					
	en el grupo periódico VIII. Metales como platino, paladio y					
Metales y	niquel, ya sea en forma de hidruros o de óxidos, son eficaces en					
aleaciones	procesos de hidrogenación y de oxidación. El mecanismo de la					
	catálisis mediante aleación es polémico en muchos casos.					
Catalizadores	Son eficaces para la deshidrogenación. Por lo general se emplean					
organometálicos de	para reacciones de monóxido de carbono con olfeinas					
metales de	(hidroformilación) y oligomerizaciones.					
transición						

Fuente: (Perry, Green, & Maloney, 2003)

A continuación las características físicas de mayor importancia de los catalizadores se muestran en la Tabla 5:

Tabla 5. Principales características de los catalizadores.

Propiedad física	Característica					
Tamaño de partícula	Las formas son principalmente: esféricas, cilindros					
	cortos o irregulares.					
	Una superficie específica elevada puede considerarse					
Superficie específica	benéfica debido a que la velocidad de reacción es					
	proporcional a la cantidad de superficie accesible.					
	Es un factor determinante. Los poros pequeños limitan					
Diámetro de poro y su	la accesibilidad de las moléculas a la superficie interna.					
distribución	Los macroporos proporcionan velocidades de					
	transfrencia de materia elevadas conduciendo a que					
	tenga lugar la reacción química.					

Característica			
Afectan directamente a la resistencia a la difusión			
causada por la colisión de unas moléculas con otras			
(difusión molecular) o por colisión de las moléculas			
con las paredes del poro (difusión de knudses).			

(Perry, Green, & Maloney, 2003)

Se han realizado diversos estudios sobre la ODH-Et empleando diferentes catalizadores para medir su eficiencia en el sistema de reacción, es decir que tengan una alta selectividad de etileno y alto rendimientos en el sistema de reacción. En la Tabla 6 se muestra una síntesis de las investigaciones realizadas acerca de la deshidrogenación oxidativa de etano. De acuerdo a los diferentes estudios realizados sobre el proceso ODH-Et utilizando diferentes catalizadores probando la selectividad del etileno y conversión del etano, Se ha encontrado que los catalizadores de óxido metal mixto son una buena opción para este tipo de proceso debido a su alta actividad catalítica, alta selectividad de etileno y alta conversión de etano. (Haribal, Neal, & Li, 2016)

REACCIÓN	CATALIZADOR	TIPO DE REACTOR	CARACTERÍSTICAS	CONDICIONES DE OPERACIÓN	REFERENCIA
*Deshidrogenación oxidativa de etano a etileno	Ácido molibdeno fosfórico descompuesto soportado en alúmina Al ₂ O ₃	Reactor de lecho empacado	La fuente de precursor de Mo tiene una clara influencia en el rendimiento catalítico.	T= $450-550$ °C P=1 atm Conversión de etano > 24% . Selectividad de etileno aprox. 65 %	(Kumar, et al., 2013)
*Deshidrogenación oxidativa de etano a etileno en un sistema con óxido de metal microesférico circulante portador de oxígeno.	Mo-Te-V-Nb-O Soportado en Al ₂ O ₃	Reactor de lecho fluizado	Interacción del etano con un contacto microesférico sólido circundante portador de oxígeno.	T= 550-600°C Conversión de etano de 12.5 %. Selectividad del etileno del 90%.	(Gerzeliev, Popov, & Ostroumova, 2016)

Tabla 6. Síntesis de catalizadores empleados en la ODH-Et.

REACCIÓN	CATALIZADOR	TIPO DE REACTOR	CARACTERÍSTICAS	CONDICIONES DE OPERACIÓN	REFERENCIA
*Deshidrogenación oxidativa de etano a etileno en un sistema con óxido de metal microesférico circulante portador de oxígeno.	MoO ₃ / Al ₂ O ₃	Reactor de lecho fijo y uso de un regenerador	Para que el sistema MoO3 /Al ₂ O ₃ tenga actividad en ODE, es necesario que el componente Mo se distribuya de manera uniforme en la superficie de soporte.	T= 600°C Conversión del etano: 44.4 a 66.5 % Alta selectividad (>90%)	(Khadzhiev, et al., 2015)
*Bioetileno	Producción de etileno biológico, mediante una enzima productora de etileno (EFE) que se encuentra en algunas bacterias y hongos.	Bioreactor	Debe haber disponibilidad del sustrato para la enzima.	Experimentos llevado a cabo a $T= 37^{\circ}C$ P= 1 atm Aún se encuentra en estudio.	(Lynch, Eckert, Yu, Gill, & Maness, 2016)
*Deshidrogenación oxidativa del etano.	Mo-Te-V-Nb-O	Reactor de lecho empacado	Modo cíclico con alimentación alternativa de etano y aire	T= 360-400°C Presión: 1 atm Selectividad de etileno 85-91%. Conversión del etano del 16- 37%.	(Mishanin, et al., 2017)
Dsehidrogenación oxidative de etano	Mo-Te-V-Nb- O/TiO ₂	Multitubular	Utiliza un modelo cinético confiable	T = 430 °C P= 1 atm Selectividad del etileno: 76-96%	(Che-Galicia, Martínez, López-Isunza, & Araiza, 2015)
*Deshidrogenación oxidativa de etano	Ba-Sr-Co-Fe-O	Reactor de membrana catalítico	El etileno se produce selectivamente evitando el contacto directo de oxigeno molecular he hidrocarburos. Dilución de etano en la alimentación	T=850°C Selectividad de 80 y 90 respectivamente	(Lobera, Escolástico, & Serra, 2011)

De acuerdo a la Tabla 6 y otros estudios sobre catalizadores para la producción de etileno mediante el proceso de ODH-Et, revelan que los catalizadores de óxido de metal mixto son prometedores debido a que son altamente activos y selectivos en la reacción de ODH-Et, además de su facilidad de preparación, larga vida útil y condiciones de reacción favorables (temperatura y presión). (Baroi, Gaffney, & Fushimi, 2017) En general, los catalizadores óxidos mixtos de MoVTeNbO han mostrado una alta selectividad y actividad

en ODH-Et de etano a etileno, propano a propeno y oxidación selectiva del ácido acrílico y acrilonitrilo. (Melzer, et al., 2016)

De acuerdo a lo reportado en la literatura se ha encontrado una selectividad del etileno de 76 a 96%, con conversiones de etano de 17-85 % para el proceso de ODH-Et sobre el catalizador MoVTeNbO a una temperatura de reacción de 400 - 480 °C. (Che-Galicia et al 2014)

Catalizador MoVTeNbO

El catalizador MoVTeNbO está conformado principalmente por dos fases cristalinas, la fase M1 ortorrómbica y la fase M2 pseudohexagonal, y en menor proporción otras fases tales como: MoO₃ Mo₄O₁₁ y Mo₅O₁₄. (Baroi, Gaffney, & Fushimi, 2017) La fase M1 y M2 son compuestos multicomponentes de composición compleja. La fase M1 se puede describir mediante la fórmula general (TeO)xM₅O₁₄, y la fase M2, mediante la fórmula (TeO)xM₃O₉, donde M = Mo, Nb o V y $0 \le x \le 1$. (Ishchenko, et al., 2014) Estudios sobre el catalizador MoVTeNbO revelan que la activación del etano está correlacionada con la disponibilidad de facetas [001], [120] y [210] en la superficie de los cristales de la fase M1. De los cuales [120] y [210] presentan posiciones cristalinas relacionadas con los centros activos típicos descritos para la oxidación de propano. Por otro lado, la faceta [010] tiene baja actividad atribuida a su configuración, la cual únicamente consiste de unidades M₆O₂₁ estables conectados por un solo octaedro. Por lo que se ha demostrado cuantitativamente que las diferencias en la actividad catalítica entre muestras M1 de igual composición química dependen principalmente de la morfología de las partículas, lo que determina las facetas de terminación predominantes. (Melzer, et al., 2016)

Estudios sobre la actividad de la fase cristalina M1 del catalizador MoVTeNbO han encontrado gran versatilidad en la fase M1 destacando su naturaleza altamente multifuncional. Las múltiples funciones catalíticas de la fase M1 capaces de activar diversos grupos funcionales (por ejemplo, alcanos, alquenos, alcoholes y aldehídos). (Amakawa, Kolen'ko, Schlçgl, & Trunschke, 2014) Por lo que la fase cristalina M1 es responsable de la alta actividad catalítica y selectividad de MoVTeNbOx; la capacidad de la fase M1 para activar alcanos se atribuye a su plano basal [001]. Figura 9.

Figura 9. Diagrama de dos dimensiones de la celda unitaria MoVTeNbOx de la fase cristalina M1 de su plano basal [001] con 13 sitios de cationes etiquetados. Donde los centros de los sitios activos están compuestos por las posiciones de metal S2-S4-S7 (rojo y verde), que se encuentra entre las células unitarias. Los poliedros de diferentes colores indican las composiciones según la etiqueta. Fuente: (Melzer, et al., 2016)

En donde el niobio (Nb) está ubicado en las bipirámides pentagonales, estabilizando los octaedros de Mo-V alrededor de sí mismo. El telurio junto con el oxígeno unido (Te-O) ocupa el 22 % del volumen total de los seis canales miembros y el vanadio (V) se localiza en los octaedros de los canales, con un grado de oxidación distinto al del molibdeno (Mb). (Ishchenko, et al., 2014)

A las especies V se les atribuye los sitios activos en la activación del etano, las especies Mo mejoran la actividad catalítica de los átomos de V, las especias Te están asociadas con la formación de la fase cristalina activa M1 y las especies Nb mejoran la selectividad del etileno. Para este catalizador es recomebdable trabajar a temperatutas menores a 500 °C, debido a que a temperaturas mayores de 500°C existe una pérdida irreversible de actividad catalítica debido a la eliminación de telurio Te el cual es producido en la sección final del de la fase cristalina M1, a través del plano [001], modificando la composición de la fase cristalina M1 causando la destrucción parcial de MoVTeNbO con la formación simultanea de MoO2 afectando la actividad y selectividad del etileno. (Che-Galicia, Martínez, López, & Araiza, 2015)

Velocidad catalítica de reacción

Los modelos básicos para la descripción de reactores catalíticos son el reactor continuo de tanque agitado y de flujo pistón. (Lechuga, 2008) La Figura 10 se muestra las
etapas necesarias para que se realice la catálisis heterogénea y perfiles de concentración y temperatura para un gránulo de catalizador en un punto específico dentro del reactor. (Lechuga, 2008)

Etapas de la catálisis heterogénea:

- Existirá una capa límite o estacionaria alrededor del catalizador si la velocidad de corte del fluido sobre la partícula del catalizador relativamente pequeña. Los reactivos deberán llegar a la superficie externa del catalizador, por lo que deben vencer esta resistencia.
- 2. Los sitios activos en la superficie externa de un catalizador son mínimos comparados con los sitios activos presentes en el interior del catalizador (catalizador poroso).
- 3. Los reactivos deben adsorberse sobre los sitios activos.
- 4. Las especies adsorbidas deben reaccionar entre ellas.
- 5. Los productos deben resorberse.
- 6. Los productos deben difundirse a través de los poros y alcanzar su entrada en la superficie externa del catalizador.
- 7. Los productos deben vencer la resistencia de la capa límite y finalmente llegar al fluido global.

Figura 10. Etapas necesarias para la catálisis heterogénea. Fuente: (Lechuga, 2008)

Los pasos 1 y 7 corresponden a transferencia externa de masa. Los pasos 2 y 6 se refieren a transferencia interna de masa. Los pasos 3, 4 y 5 involucran a la cinética intrínseca de reacción.

Para que una reacción catalítica se lleve a cabo, además de los pasos ya mencionados, deben satisfacerse los requerimientos energéticos de la o las reacciones.

Tipo de reactores

En la Figura 11 se presenta un gráfico simple de la clasificación de los tipos de reactores.

Figura 11. Clasificación tipos de reactores químicos.

Para el diseño de reactores con catalizador, es de gran importancia considerar la transmisión de calor, la pérdida de presión y el contacto entre fases. La mayor parte de los procesos catalizados por sólidos emplean lechos. Por ejemplo lechos fijos sencillos, lechos fijos múltiples, reactores multitubulares, reactores slurry (o de lodos), reactores de transporte de sólidos (o de arrastre), lechos fluidizados, lechos móviles y lechos de malla o rejilla. (Perry, Green, & Maloney, 2003)

Caída de presión en el diseño de reactores químicos

Para reacciones en fase líquida, el efecto de la caída de presión sobre la velocidad de reacción al determinar el tamaño de un reactor químico, puede ignorarse, debido a que es un fluido incomprensible y la concentración de los reactivos no se ve afectada por cambios grandes en la presión global del sistema. Por otro lado, para reacciones en fase gaseosa, el efecto de la caída de presión sobre el sistema de reacción constituye un factor clave para el éxito o fracaso en la operación de un reactor. Dado que es un fluido comprensible, la

concentración de las especies reaccionantes es proporcional a la presión global del sistema. (Fogler, 2008)

Efecto de la caída de presión en el diseño de los reactores de lecho empacado

Por lo general, las reacciones en fase gaseosa se llevan a cabo acompañadas de un catalizador, haciendo pasar el reactivo por un lecho empacado de partículas de catalizador (Figura 12). (Fogler, 2008)

Figura 12. Lecho empacado. Fuente: (Fogler, 2008)

La ecuación de Ergun, es la expresión más utilizada para el cálculo de la caída de presión en un reactor de lecho empacado de tipo poroso.

$$\frac{dP}{dz} = - \begin{array}{c} G & 1 - \emptyset & 150(1 - \emptyset)\mu \\ \hline \\ gg D & \\ c & e \end{array} \begin{pmatrix} 1 - \emptyset & 150(1 - \emptyset)\mu \\ gg D & \\ \hline \\ gg D & \\ e \end{pmatrix} + 1.75G$$

Donde:

 $\frac{150(1-\emptyset)\mu}{D_e}es$ considerado el término que domina en flujo laminar.

175G es considerado el término que domina en flujo turbulento.

 $P = presión, \ lb_f / pies^2 \ (kPa)$ $\emptyset = porosidad = \frac{volumen \ de vacío}{volumen \ global \ del \ lecho} = fracción \ de vacío$ $1 - \emptyset = \frac{volumen \ de vacío}{volumen \ global \ del \ lecho}$

 $G_c = 32.174 \ lb_m * pies/s^2 * lb_f$ (factor de conversión) = 4.17 x 108 $lb_m * pies/h^2 * lb_f$ (en el sistema métrico gc= 1.0)

D_p= diámetro de partículas en el lecho, pies (m)

 μ = viscosidad del gas que pasa por l lecho, lb_m/pies * h (kg/m*s)

Z= longitud o largo de lecho empacado de tubería, pies (m)

u = velocidad superficial = flujo volumétrico/área de la sección transversal del tubo, pies/h (m/s)

q= densidad del gas, lbm/pies³ (kg/m³)

G= qu= densidad de flujo másico, lb_m/pies²* h (kg/m² *s)

El único parámetro que varía con la presión en la ecuación de Ergun es la densidad.

Para este trabajo de tesis, debido a que el proceso ODH-Et se lleva a cabo en fase gaseosa y ya que es una reacción catalítica, es preciso considerar la caída de presión en el reactor y equipos que intervengan en el proceso para el diseño adecuado del reactor, ya que estos no deben ser despreciados.

1.2 PLANTEAMIENTO DEL PROBLEMA

El estudio de la deshidrogenación oxidativa del etano a nivel laboratorio o en plantas pilotos resulta tener un alto costo. Por lo que surge la necesidad de emplear herramientas de estudio que, con un menor costo, permita conocer diversos escenarios en el diseño y optimización del proceso.

1.3 JUSTIFICACIÓN

La alta demanda de producción de etileno debido a sus diferentes usos, hace necesaria la búsqueda de nuevos procesos óptimos, con menor requerimiento energético, menor formación de subproductos no deseados y amigables con el medio ambiente, comparado con los procesos convencionales. La deshidrogenación oxidativa de etano (DHO-E) parece ser un proceso alternativo y prometedor. Ante la necesidad de desarrollar herramientas que permitan estudiar diversos escenarios para la generación de conocimiento en el diseño y optimización de este proceso, la implementación de algún software como Aspen plus V8.8 es una alternativa para el desarrollo de modelos de simulación que permitan evaluar múltiples escenarios en un menor tiempo y costo comparado con estudios realizados en una planta piloto; por lo que en este trabajo tesis se propone llevar a cabo la síntesis del modelo de simulación en Aspen plus V8.8 para el sistema de reacción ODH-Et sobre el catalizador MoVTeNbO/TiO₂ para la producción de etileno.

1.4 OBJETIVOS

1.4.1 OBJETIVO GENERAL

Desarrollar un modelo de simulación para la caracterización del sistema de reacción de la deshidrogenación oxidativa de etano empleando como catalizador MoVTeNbO/TiO₂.

1.4.2 OBJETIVOS ESPECÍFICOS

- 1. Realizar el diseño conceptual del sistema de reacción.
- Caracterizar el sistema de reacción para la identificación de las variables críticas del proceso.
- Determinar las condiciones de operación que maximicen el rendimiento del proceso a partir del análisis paramétrico del sistema de reacción.
- Determinar la correlación entre las variables de operación y las condiciones críticas de proceso.

1.4 HIPÓTESIS

La síntesis de un modelo de simulación del sistema de reacción para la producción de etileno a partir de la ODH-Et empleando como catalizador MoVTeNbO/TiO₂, permitirá analizar y determinar las condiciones de operación que maximicen el rendimiento del proceso.

CAPITULO 2 METODOLOGÍA

En el presente capítulo se presentan detalles sobre el procedimiento seguido para el desarrollo de este trabajo de tesis en el logro de los objetivos presentados. El procedimiento se divide en tres etapas. La etapa uno se enfocó en la realización del diseño conceptual del sistema de reacción, el desarrollo de la topología del proceso mediante la secuencia de operaciones necesarias para la transformación de la materia prima en el producto deseado, el uso de heurísticas de diseño y restricciones de operación del caso de estudio. La etapa dos se orientó en realizar la simulación, validación del modelo cinético del sistema de reacción ODH-Et y análisis paramétrico de este. Finalmente la etapa tres, se empleó para la realización del proceso de separación para la recuperación de etileno en el simulador de Aspen plus V8.8 donde se obtuvieron las condiciones óptimas del proceso teniendo en consideración el requerimiento energético.

Figura 13. Síntesis de la metodología para el modelo de simulación del sistema de reacción de ODH-Et sobre el catalizador MoVTeNbO/TiO₂

2.1 DISEÑO CONCEPTUAL DEL SISTEMA DE REACCIÓN

Para el logro del objetivo uno se desarrolló la topología del proceso a partir de la caracterización del sistema de reacción propuesto por Che-Galicia et al. (2015), contemplándose heurísticas de diseño y restricciones de operación del caso de estudio.

2.1.1 CARACTERIZACIÓN DEL SISTEMA

Mecanismo de reacción

El mecanismo de reacción de ODH-Et sobre el catalizador MoVTeNbO/TiO₂ está conformado por las reacciones R1-R5, en donde las materias primas son el etano (C_2H_6) y oxígeno (O_2), teniendo como producto principal el etileno (C_2H_4) y subproductos como el agua (H_2O), monóxido y dióxido de carbono (CO y CO₂). Las velocidades de reacción correspondientes se muestran en las ecuaciones Ec. 2.1 a Ec. 2.5, las cuales están expresadas en función de presiones parciales de los componentes y sitios activos del catalizador.

	Ecuaciones de reacción	Velocidades de	reacción:
<i>R1:</i> R2:	$\begin{array}{rcl} C_2H_6 + 0.50_2 \rightarrow & C_2H_4 + & H_20 \\ C_2H_6 + 35O_2 \rightarrow & 2CO_2 + & 3H_2O \end{array}$	$ r_1 = k_1 e_{C_2 K_6} 8_o $ $ p = k_2 e_{C \ K} \ 8^{N2} $	Ec. 2. 1 Ec. 2. 2
R3:	$C_2H_6+25O_2 \rightarrow 2CO+3H_2O$	$\mathfrak{g} = k_3 \mathfrak{e}_{\mathbf{C}} \kappa 8^{\mathbf{N}_3}$	Ec. 2. 3
R4:	$C_2H_4 + 3O_2 \rightarrow 2CO_2 + 2H_2O$	$\mathfrak{n} = k_4 \mathbf{e}_{\mathrm{C} \mathrm{K}} 8^{\frac{2}{\mathrm{N}^4}}$	Ec. 2. 4
R5:	$C_2H_4+2O_2 \rightarrow 2CO+2H_2O$	$\mathbf{r} = \mathbf{k} \mathbf{e} \qquad \qquad \mathbf{\delta}^{2} \mathbf{\delta}^{N5}$	<i>Ec. 2. 5</i>
		5 5 C ₂ K ₄ o	

Donde k_i es el coeficiente de velocidad de reacción, $[mmol(g_{cat}h)^{-1}]$, p_i es la presión parcial del componente n en la fase gaseosa, [Pa], θ_o es la fracción de cobertura del O₂ en los sitios activos del catalizador y m_i es el orden de reacción.

El balance de sitios activos se muestra en la Ec. 2.6.

$$8_* + 8_0 + 8_{K_{20}} = 1$$
 Ec. 2. 6

En donde θ_0 es la fracción de cobertura del O₂ en los sitios activos del catalizador, θ_{H_2O} es la fracción de cobertura del H₂O en los sitios activos del catalizador y θ_* es la fracción de sitios activos libres en el catalizador, las cuales están expresadas en la Ec. 2.7, Ec. 2.8 y Ec. 2.9, respectivamente.

$$8_0 = (K_{0_2} e_{0_2})^2 8_*$$
 Ec. 2. 7

$$8_{K_{20}} = K_{K_{20}} P_{K_{20}} 8_*$$
 Ec. 2. 8

$$8_* = \frac{1}{\frac{1}{1 + (K_{0_2} p_{0_2})^{2_+} K_{H_20} p_{H_20}}}$$
Ec. 2. 9

Donde p_n es la presión parcial para el componente n, [Pa] y K_n es la constante de equilibrio de absorción para el componente n, [(Pa)⁻¹].

En la Ec. 2.10 y Ec. 2.11 se muestran la ecuación de Arrhenius y van't Hoff.

$$k = \exp[A^{u} - \frac{E_{Ai}}{i} \frac{1}{R} (\frac{1}{T^{-}T^{*}})]$$
 Ec. 2. 10

$$K_{n} = \exp[\frac{AS_{n}^{\circ}}{R} - \frac{AK_{n}^{\circ}}{R} (\frac{1}{T^{-}} \frac{1}{T^{*}})]$$
 Ec. 2. 11

donde A^{u}_{i} es el logaritmo natural del factor preexponencial para la i-ésima reacción, [mmol(g_{cat}h)⁻¹], E_{Ai} es el factor de energía de activación para la i-ésima reacción, [kJ mol⁻¹], T es la temperatura de reacción, [K], T* es la temperatura de referencia, [K], ΔS_{n}° es la entropía estandar de adsorción del componente n, [kJ(mol K)⁻¹], ΔH° es la entalpía estándar de adsorción del componente n, [kJ(mol K)⁻¹] y R es la constante del gas universal, [kJ(mol K)⁻¹].

Los parametros cinéticos para el sistema de reacción de la ODH-Et se muestran en la Tabla 7.

Tabla 7.	Parámetros	cinéticos	del	sistema	de	reacción	de l	a
DHO-E								

Parámetros	Valor estimado
A1' mmol/gcat h	5.5
A2' mmol/gcat h	0.686
A3' mmol/gcat h	1.58
A4' mmol/gcat h	2.6
A5' mmol/gcat h	0.787
EA,1 KJ/mol	90.5
EA,2 KJ/mol	165
EA,3 KJ/mol	150
EA,4 KJ/mol	139
EA,5 KJ/mol	132
$\Delta S^{*} {}_{0_{2}} J/m l k$	-215
$\Delta S^{*} \frac{J}{H_{2}0} J$	-42
$\Delta \mathbf{H}^{\circ}_{02}$ J/nol	-45600
$\Delta H^* = \frac{1}{H_2 0} J/m$ ol	-128000
m2	0.922
m3	0.906
m4	1.23
m5	0.905

Donde Ai es el logaritmo natural del factor pre-exponencial,

EA,i es la energía de activación para cada reacción, $\Delta S_0^{\circ} y$

$$\begin{split} \Delta S^{^{\circ}}_{K_{2}0} & \text{ son la entropía estándar de adsorción para el } O_2 & y \\ H_2O, \Delta H^{^{\circ}}_{0_2} & y \Delta H^{^{\circ}}_{K_{2}0} \\ \text{ del } O_2 & y \\ H_2O & y \\ \text{ mi es el exponente del término de adsorción.} \\ \text{Fuente: Che-Galicia et al. (2015).} \end{split}$$

Los datos generados en la Tabla 7 fueron introducidos en el simulador en el apartado de reacciones. Para el factor cinético, Aspen requiere el valor del factor pre- exponencial (k) en unidades de kmol/kgcat seg y de acuerdo a los datos generados en la Tabla 7, A' es el logaritmo natural del factor pre-esponencial en mmol/gcat h, por lo que al valor de A' para cada reacción, se obtuvo el exp(A') seguido de convertir las unidades de acuerdo a lo que Aspen requiere.(*ver en el apartado de resultados Tabla 18.*)

Para la simulación en Aspen plus V8.8 se requiere que las velocidades de reacción estén expresadas en función de variables medibles, (variables de estado) como la concentración o la presión parcial de los componentes, por lo que una etapa preliminar en este trabajo de tesis es la expresión algebraica de las velocidades de reacción al formato que Aspen plus V8,8 requiere (Ec. 2.12).

$$r = \frac{\underbrace{(k* \ e^{-R \ T \ T_0})}_{(\sum_{j=1}^{m} K_j(\prod_{j=1}^{j} C_j))} N \ e_j}{M \ N \ y_j} Ec. 2. 12$$

De acuerdo al simulador Aspen plus V8.8, en el numerador el primer término de la ecuación está definido como el factor cinético, donde k es el factor pre-exponencial $\left[\frac{\log Q}{(K_0 \circ R)^{\text{E}}(\cos)^{3/2}}\right]$ en donde, TE= exponente de temperatura en K o °R, conc.=unidades

de concentración, la cual depende de la base de concentración seleccionada, [concentración molar (kgmol/m³), molalidad (gmol/kg de agua), fracción molar o másica (sin dimensiones), presión parcial o fugacidad (N/m²) y concentración de masa (kg/m³)] y DFCE= exponente de concentración de fuerza motríz; E es la energía de activación para la i-ésima reacción, [kJ mol⁻¹], R es la constante de los gases ideales [kJ(mol K)⁻¹], T es la temperatura absoluta de reacción [K], T_o es la temperatura de referencia [K]; el segundo término del numerador de la ecuación está definido como el término de la fuerza impulsora,

donde $K_1 ext{ y } K_2$ son constantes del término de la fuerza impulsora $\left[\frac{ceg* (kg:atalizador o N^3)}{(K ext{ o 'R})^{TE}(cont)^{DRE}}\right]$

Ci,j está referido como la concentración del componente (i,j), [concentración molar (kgmol/m³)], α_{i} **b** son exponentes de término de la fuerza impulsora y **s** está referido a la operación producto; por último el término del denominador está definido como el término de adsorción, donde K_i es la constante del término de adsorción del componente i,

 $[\]left[\frac{\left[\frac{\log k}{\log (k \log (2\pi i d) \log N^{2})}\right] y m}{(K \circ R)^{\text{IE}}(\cos)^{\text{IRCE}}}\right] \text{ es el exponente del termino de adsorción.}$

Para la simulación, el cálculo de los factores A y B del término de la fuerza impulsora y termino de adsorción, se emplea la Ec. 2.14 y 2.15 (determinadas a partir de la ecuación de vant Hoff (Ec.2.11)) de acuerdo al formato que Aspen plus V8.8 requiere (Ec. 2.13).

$$k_1, k_2, K_i = A + \frac{B}{T}$$
 Ec. 2. 13

Donde K_i es el coeficiente de equilibrio de adsorción para el componente i, [(Pa)⁻¹] A y B son factores del término de la fuerza impulsora y termino de adsorción [adimensionales] y T es la temperatura de reacción [K].

$$A = N \underbrace{\overset{OS^{\circ}}{n}}_{R} + N \underbrace{\overset{OH^{\circ}}{n}}_{R T^{*}}$$
Ec. 2. 14
$$B = N(- \underbrace{O}_{R} \underbrace{\overset{\circ}{n}}_{R})$$
Ec. 2. 15

Donde ΔS° es la entropía estándar de adsorción para el componente n, [^{KJ}], ΔH° ⁿ es la entalpía estándar de adsorción para el componente n, [^{KJ}], R es la constante del gas universal [$\frac{KJ}{mol K}$] y N es el orden del término de la fuerza impulsora y el término de adsorción. Los valores de los parámetros cinéticos ($\Delta S^{\circ}_{n} y \Delta H^{\circ}_{n}$) empleados fueron tomados de la Tabla 7.

De acuerdo a las expresiones de las velocidades de reacción generadas en función de variables medibles (Tabla 19) *ver en el apartado de resultados*, se sintetiza el exponente del término de la fuerza impulsora y el exponente del término de adsorción para cada reacción (N), la cual se presenta a continuación en la Tabla 8.

Exponente:			O_2	H ₂ O
Para el término de adsorción	N	rx	0.5	1
		r1	0.5	-
	Ν	r2	0.461	-
Para el término fuerza impulsora		r3	0.453	-
i ulu el termino i del 20 mipulsolu		r4	0.615	-
		r5	0.4525	-

Tabla 8. Exponente para el término de adsorción y fuerza impulsora, para cada reacción.

El exponente para el término de adsorción es el mismo para todas las reacciones (0.5 para el O_2 y 1 para el H_2O), mientras que el exponente para el término de la fuerza impulsora varía para cada reacción.

Con el fin de describir la secuencia de cálculo empleada para la obtención de la Ec. 2.12 para cada reacción química, en la Figura 14 se describe el desarrollo matemático aplicado al sistema de reacción ODH-Et, en donde de forma general se describen la secuencia de pasos a realizar para la transformación de las ecuaciones de velocidades de reacción (Ec. 2.1 - 2.5) a variables medibles y a la forma que Aspen plus V8.8 requiere, así también para el cálculo de los factores A y B.

Los valores calculados para los factores A y B para cada reacción de acuerdo a la Ec. 2.14 y Ec. 2.15, se muestran en la Tabla 20 y Tabla 21 para el término de adsorción y fuerza impulsora, respectivamente (*ver en el apartado de resultados*).

Figura 14. Diagrama de bloques para la expresión algebraica de las ecuaciones de velocidad de acuerdo a la forma que Aspen V8.8 requiere y cálculo de los factores A y B.

A manera de ejemplo, se realiza el desarrollo matemático de acuerdo a lo descrito en la Figura 14, considerando la ecuación de velocidad $[r_1 = k_1 e_{C_2 K_6} 8_o]$ (Ec.2.1):

Sustituyendo la Ec.2.7 [$\$_0 = (K_{0_2}e_{0_2})^2 \$_*$] en la Ec. 2.1, se obtiene la Ec. 2.16:

$$r_{1} = k_{1}p\epsilon_{2H_{6}}(K_{0_{2}}e_{0_{2}})^{2}8_{*} \qquad Ec. \ 2. \ 16$$
Sustituyendo la Ec.2.9 [8* = $\frac{1}{1+(K_{0_{2}}p_{0_{2}})^{2}+K_{H_{2}0}P_{H_{2}0}}$] en la Ec. 2.16, se obtiene la Ec. 2.17:

$$r_{1} = \frac{k_{1}p\epsilon_{2}H_{6}(K_{02}p_{02})^{2}}{\frac{1}{[1+(K_{02}p_{02})^{2}+K_{H_{2}}0]H_{2}0]}} Ec. 2. 17$$

Sustituyendo el valor de Nl dado en la Tabla 4, se obtiene la Ec. 2.18:

 $r_{1} = \frac{k_{1} p_{e_{2}H_{6}} (K_{0_{2}} p_{0_{2}})^{0.5}}{\left[1 + (K - 0_{2} p_{0_{2}})^{0.5} + K_{H_{2}0} - p_{H_{2}0}\right]}$ Ec. 2. 18

Finalmente reacomodando los términos, se obtiene la Ec. 2.19:

$$\mathbf{r} = \frac{k_1 (K_{02} P_{02}) \quad {}^{05} \mathbf{p}_{\epsilon_2 H_6}}{[1 + (K_{02} P_{02})^{05} + K_{H_2 0} \mathbf{p}_{H_2 0}]}$$
Ec. 2. 19

A manera de ejemplo, para el cálculo de los factores A y B para el término de adsorción, se tomó como consideración la ecuación de velocidad de reacción la $[r_1 = k_1 e_{C_2 K_6} 8_0]$ Ec. 2.1.

Sustituyendo el valor de entropía y entalpía dado en la Tabla 4 en $[A = N \frac{OS_{n}}{R} + N \frac{OH^{\circ}_{n}}{RT^{*}}]$ (Ec. 2.14) para el O₂, en donde N=0.5, utilizando una R = 831X10⁻³ <u>KJ</u>, y T*= 723.15 K se obtiene:

$$-022 - \frac{K}{100} -4560 - \frac{K}{100}$$

$$A = 05 - \frac{m_0}{100} - \frac{K}{100} - \frac{m_0}{100} = -167212937$$

Sustituyendo el valor de entalpía dado en la Tabla 4 en $[B = N(-\frac{OH_{\underline{n}}}{R})]$ (Ec. 2.15) para el O₂, en donde N=0.5 y utilizando una R = $831X10^{-3}$ ^{KI} ______ se obtiene:

$$B = 05 (- \frac{-4560 \frac{K}{mol}}{831X10^{-3} \frac{K}{mol}}) = 274221$$

Condiciones de operación del sistema de reacción

La reacción de ODH-Et sobre el catalizador MoVTeNbO/TiO₂ se lleva a cabo en un reactor tubular de lecho fijo cuyas condiciones de operación y dimensionamiento se muestran en la Tabla 9.

Dimensiones del catalizador y reactor	Valor
L (Longitud del reactor) (m)	2.5
dt (Diámetro del tubo del reactor) (m)	0.0256
dp (Diámetro de partícula del catalizador) (m)	0.0082
$s (\mathbf{m}_{\mathrm{f}}^3 \ \mathbf{m}_{\mathrm{T}}^{-3})$	0.48
$q_b (Densi daddel echb(kg_{cat} m^{-3}) $	75
Condiciones de operación	
P (Presión del reactor) (atm)	1
Tb (Temperatura del refrigerante) (°C)	400 - 480
To (Temperatura de flujo de alimentación al reactor) (°C)	200
*Flujo volumétrico N (m ³ h ⁻¹)	4
Concentración de alimentación de C ₂ H ₆ , % mol	1 - 40
Concentración de alimentación de O ₂ , % mol	7

Tabla 9. Condiciones de operación y dimensiones del catalizador y reactor.

Fuente: Che-Galicia et al. (2015). * A condiciones estándar.

La temperatura a la cual inicia la reacción de la ODH-Et sobre el catalizador MoVTeNbO/TiO₂, se determinó al graficar k (constante de Arrhenius) vs T (perfiles de temperatura de reacción), para cada velocidad de reacción (Ec. 2.1 a Ec. 2.5) (Figura 15), misma que fue corroborada por la literatura de Che-Galicia et. al., (2015).

Figura 15. Gráfico de k (constante de Arrhenius) vs T (perfiles de temperatura de reacción (K)) del sistema de reacción ODH-Et sobre el catalizador MoVTeNbO/TiO₂. Fuente: (Che-Galicia, Martínez, López, & Araiza, 2015)

En la Figura 15 se observa que a la temperatura de 600 K (327 °C), la velocidad de reacción r_1 (Ec. 2.1) se dispara, (reacción que produce C_2H_4 a partir de C_2H_6), mientras a que una temperatura de 710 k (437 °C) la velocidad de reacción r4 es la segunda en activarse (reacción que produce CO_2 a partir de C_2H_4), mientras que para las reacciones r_2 , r_3 y r_5 se activan a una temperatura mayor de 715 K (442 °C).

En el APÉNDICE I se presentan las propiedades fisicoquímicas de los compuestos que componen al sistema de reacción ODH-Et.

Heurísticas para el sistema de reacción

A continuación en la Tabla 10 se muestran las heurísticas que fueron tomadas en cuenta para la caracterización del sistema de reacción ODH-Et.

Tabla 10. Heurísticas tomadas en cuenta para el	sistema de reacción de ODH-Et
---	-------------------------------

PROPUESTO	
POR:	HEURÍSTICAS
	1. Se recomienda que el sistema de reacción se lleve a condiciones de
	temperatura ambiente y presión atmosférica.
	2. Se proporcionará como parte del reactor un intercambiador de calor
	en caso de requerir calor necesario para calentar o enfriar las corrientes
	del fluido del proceso.
Seider et al. (2003)	3. Se recomienda usar en exceso un reactivo químico para consumir
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	completamente un reactivo de gran valor, tóxico o peligroso.
	4. Para eliminar calor de reacción altamente exotérmico, considere el
	uso de un reactivo en exceso, un diluyente inerte o inyecciones frías.
	5. Para reacciones de competencia, en serie o en paralelo, ajustar la
	temperatura, la presión y el catalizador para obtener un alto
	rendimiento de los productos deseados
	6. Las caídas de presión son 0.1 bar (1.5 psi) para intercambiadores de
	calor y 0.2 - 0.62 bar (3 - 9 psi) para otros servicios.
Turton et al. (2012)	7. Los reactores de flujo tubular son adecuados para una alta tasa de
	producción, un tiempo de residencia corto (segundos o minutos) y
	cuando se necesita una transferencia de calor sustancial.
	8. La velocidad de reacción en un sistema heterogéneo se controla más
	a menudo por la velocidad de transferencia de calor o masa que por la
	cinética de reacción química.

(Turton, Bailie, Whiting, Shaeiwitz, & Bhattacharyya, 2012) (Seider, Seader, & Lewin, 2003)

## Topología del proceso

La entrada de la materia prima ( $C_2H_6$  y  $O_2$ ) al sistema de reacción se encuentra en fase gas, lo que hace necesario acoplar un compresor, para su alimentación. La temperatura a la cual inicia la reacción ODH-Et sobre el catalizador MoVTeNbO/TiO₂ es T = 327 °C, lo que implica el uso de un sistema de acondicionamiento térmico (intercambiador de calor), de acuerdo a la heurística 2. Se pretende que el reactor trabaje en un rango de presión de (1 atm < P < presión óptima), de acuerdo a la heurística 1. Dado que el sistema de reacción es

exotérmica, el reactor requerirá de servicio auxiliar, de acuerdo a la heurística 4. Se introduce oxígeno en exceso, el cual es suministrado de una corriente de aire seco (21 %  $O_2$  y 79 %  $N_2$ ), considerando al  $N_2$  como un diluyente inerte, para asegurar la conversión máximo del etano, de acuerdo a la heurística 3 y 4, teniendo en cuenta el límite de explosividad del  $C_2H_6$ (3 - 12.5 % en volumen en el aire). El sistema de reacción se lleva a cabo en un reactor tubular de acuerdo a lo reportado por Che- Galicia et al., (2015), por lo que con la heurística 7 se ratifica este hecho. De acuerdo a la heurística 6, es importante considerar las caídas de presión en la simulación. Se identifica la necesidad de realizar análisis de sensibilidad respecto a la temperatura del servicio auxiliar (T_b) y coeficiente global de transferencia de calor (U) en el sistema de reacción ODH-Et, de acuerdo a la recomendación de la heurística 5 y 8.

A partir de la consideración del mecanismo de reacción, las condiciones de operación y heurísticas de diseño, se desarrolló un diagrama de bloques del sistema de reacción, (Figura 23), *véase en el apartado de resultados*, mismo que posteriormente se utilizó para realizar la modelación y simulación del sistema de reacción.

## 2.2 MODELACIÓN Y SIMULACIÓN DEL SISTEMA DE REACCIÓN

Para el logro del objetivo dos, se realizó la síntesis del diagrama de flujo del sistema de reacción en Aspen Plus V8.8, análisis de sensibilidad para la validación del modelo y análisis paramétricos para la caracterización del sistema de reacción.

Diagrama de flujo del sistema de reacción en Aspen plus v8.8

Se realizó la síntesis del diagrama de flujo del sistema de reacción en Aspen Plus V8.8 (Figura 24.) *véase en el apartado de resultados*, empleando como línea base el trabajo de investigación desarrollado por Che-Galicia et al., (2015). El mecanismo de reacción está conformado por las velocidades de reacción reacciones r₁-r₅, el cual se lleva a cabo en un reactor tubular de lecho fijo empleando como catalizador MoVNbTe/TiO₂. De acuerdo al modelo cinético reportado por Che-Galicia et al., (2015) empleó el modelo cinético Eley-Riedel. Para la simulación se empleo "tipo de reacción" LHHW (Ec. 2.12), para la definición de las velocidades de reacción en el simulador; es decir, se adaptó el modelo Eley Riedel al modelo cinético LHHW en la simulación Aspen plus v8.8, sin realizar

cambios en el modelo cinético Eley Riedel, esto debido a que aspen no tiene en su base de datos dicho modelo (Eley-Riedel). El modelo termodinámico empleado en la simulación Aspen plus fue Peng-Robinson, (*vease* APÉNDICE II).

El proceso presenta dos corrientes frescas: ALM con 0.016 kmol/h de C₂H₆ y AIR (mezcla de O₂ y N₂) con 0.013 kmol/h de O₂ y 0.15 kmol/h de N₂, las cuales entran a un mezclador, MIX, para generar la corriente C la cual entra a un compresor, C1, para ajustar la presión de la corriente IN-RX a 1 atm empleando un módulo de cálculo en "Flowsheeting Options", la descarga del compresor es enviada a un intercambiador de calor, H1, que acondiciona térmicamente la corriente a 200°C; la corriente IN-RX representa la alimentación al sistema de reacción a las condiciones iniciales de la reacción. El reactor tubular de lecho fijo se modela empleando un PFR con una longitud de 2.5 m y un diámetro de 0.0256 m, empleando una densidad de lecho de 75 kg/m³ y una porosidad de 0.48, diámetro de partícula del catalizador es de 0.0082 m. En las especificaciones del catalizador se consideró la transferencia de calor a diferentes temperaturas, en la Tabla 11 se muestran los datos de las propiedades de transferencia de calor del catalizador MoVTeNbO/TiO2 que fueron tomados para la simulación. Para el cálculo de la caída de presión a lo largo del reactor se empleó la ecuación de Ergun. La descarga del reactor, OUT-RX, entra a un separador, B6, el cual permite recircular la materia prima que no reacciono, así mismo evaluar el efecto del etileno en la alimentación del reactor sobre la conversión y selectividad del proceso.

ESPECIFICACIONES DE TRANSFERENCIA DE CALOR DEL CATALIZADOR	VALOR	UNIDADES
Capacidad calorífica	4186.8	J/Kg-K
*Área superficial específica	1014.49	$m^2/m^3$
Coeficiente global de transferencia de calor	258	Watt/ m ² - K

Tabla 11. Propiedades de transferencia de calor del catalizador MoVTeNbO

Fuente: *Che-Galicia et al 2015.

# 2.3 CARACTERIZACIÓN DEL SISTEMA DE REACCIÓN ODH-ET EN ASPEN PLUS V8.8

Se realizaron análisis de sensibilidad para validar el modelo, comparando los resultados de la simulación con lo reportado por Che-Galicia et al., (2015), en esta etapa, la simulación empleó una recirculación de cero. Así mimo se realizó un análisis paramétrico para evaluar el comportamiento del sistema de reacción identificando las condiciones que influyen significativamente en el rendimiento y selectividad del sistema de reacción.

Para poder evaluar el efecto de las características del servicio auxiliar y material de construcción del sistema de reacción se realizaron análisis de sensibilidad en Aspen plus V8.8, en donde se determinó el coeficiente global de transferencia de calor (U_D) que maximiza la conversión a diferentes temperaturas del servicio auxiliar en el reactor ( $T_{SA}$ ). Así mismo, la proporción C₂H₄/O₂ fue analizada mediante la variación de oxígeno en la alimentación fresca del proceso, manteniendo los demás componentes constantes. Los análisis de sensibilidad se resolvieron en combinación con módulos de cálculo y especificaciones de diseño para introducir restricciones en las condiciones de operación máxima técnicamente viable) y optimización de variables de operación (densidad del lecho). Para cada condición del análisis de sensibilidad se determinó el coeficiente global de transferencia de calor en combinación con el flujo molar de oxígeno en la alimentación, que maximiza la conversión del etano, identificando las condiciones críticas que promueven la temperatura de desactivación del catalizador (T  $g500^{\circ}$ C.) o afectan la selectividad del etano a etileno.

#### Análisis de sensibilidad para validación del modelo

Para la validación del modelo propuesto por Che-Galicia et al., (2015), se varió (en Vary) la temperatura del servicio auxiliar del reactor TSA(°C), en un rango de TSA= (400 a 480°C) con incrementos de 40°C y se definió (en Define) el coeficiente global de transferencia de calor U, la temperatura máxima alcanzada dentro del reactor durante la reacción TMAX y el flujo molar a la entrada y salida del reactor del etano (C₂H₆) para la tabulación de la conversión X. Estas pruebas se realizaron empleando una relación molar

inicial de C₂H₆/O₂/N₂ = 9/7/84 y una tasa de flujo total en la corriente IN-RX0 de 4m³/h. (Figura 16.) (*Ver en el apartado de resultados Figura 25*).



*Figura 16.* Perfiles de temperatura. Predicciones del modelo del reactor cuando TSA aumenta a 40 ° C en un cambio de rampa con una relación molar de entrada  $C_2H_6 / O_2 / N_2 = 9/7/84$ 

De igual forma para la validación del modelo propuesto por Che-Galicia et al. (2015), se varió (en Vary) la longitud del reactor, en un rango de (0 a 2.5 m) con incrementos de 0.5m y se definió (en Define) el flujo molar a la entrada y a la salida del reactor del etano y oxígeno ( $C_2H_6$  y  $O_2$ ) para la tabulación de la conversión del  $C_2H_6$  y  $O_2$ , el flujo molar a la salida del etileno, agua, monóxido y dióxido de carbono ( $C_2H_4$ ,  $H_2O$ , CO y  $CO_2$ ), para la tabulación del C $_2H_4$ ,  $H_2O$ , CO y  $CO_2$ ), para la tabulación del rendimiento del C $_2H_4$ ,  $H_2O$ , CO y  $CO_2$ . Se realizó para las siguientes temperaturas de servicio auxiliar TSA= [400, 440 y 480 °C], empleando la relación molar inicial  $C_2H_6/O_2/N_2 = 9/7/84$  y un U de 165 kcal /h-m²-k y una tasa de flujo total en la corriente IN-RX0 de 4m³/h (Figura 17) (*Ver en el apartado de resultados Figura 26*).



*Figura 17.* (a) Perfiles de conversión y rendimiento a TSA = 400 ° C; (b) Perfiles de conversión y rendimiento a TSA = 440 ° C; (c) Perfiles de conversión y rendimiento a TSA = 480 ° C. Predicciones del modelo del reactor cuando TSA aumenta a 40 ° C en un cambio de rampa con una relación molar de entrada  $C_2H_6 / O_2 / N_2 = 9/7/84$ . Fuente: (*Che-Galicia, Martínez, López, & Araiza, 2015*)

Las ecuaciones Ec. 2.20 y Ec. 2.21 fueron utilizadas para el cálculo de la conversión (X) y rendimiento (R) del sistema de reacción:

V - NRLOi - NRLi	$E_{c} = 2.20$
NRLOi	EC. 2.20
$R = \frac{NRL_Z}{NRLO_V}$	Ec. 2.21

Donde:

NRL0 = Flujo molar a la entrada del reactor del componente i

NRL = Flujo molar a la salida del reactor del componente i.

NRL  $_{Z}$  = Flujo molar a la salida de un componente dado.

NRL 0_F =Flujo molar a la entrada del reactor del componente clave.

Se calculó el error porcentual (Ec. 2.22) para la validación del modelo de simulación mediante la siguiente ecuación:

Error eorce nt ual  $|V_v - V_a| * 100$ 

Ec. 2.22

Donde:

 $V_v = Valor verdadero$ 

V_a= Valor absoluto

# 2.4 ANÁLISIS PARMÉTRICO DEL SISTEMA DE REACCIÓN

Se colocaron dos especificaciones de diseño en Aspen Plus para los análisis de sensibilidad que se describen a continuación:

1) la presión a la que trabaja el reactor debe de ser de 1 atm. Por lo que en especificaciones de diseño se definió (en Define) la variable presión, en la corriente IN-RX con unidades atmosféricas; en especificación se colocó que la variable "presión" debe de tener un valor de 1 con una tolerancia de 0.01; seguido (en Vary) se colocó que para que esto se cumpliera, Aspen plus ajustaría la presión en el compresor C1 en un rango de 1-2 atm para que la corriente de entrada al reactor IN-RX tuviera una P=1 atm.

2) Se definió (en Define) la variable de la temperatura máxima generada en el reactor TMAX, en °C; en especificaciones se colocó que el valor deseado de TMAX= 450°C con una tolerancia de 50°C; y finalmente (en Vary) se varió el valor de U en un rango de 10- 600 kcal/h-m2-k.

## Análisis de sensibilidad 1:

Se varió (en Vary) el coeficiente global de transferencia de calor U, dentro de un rango de (10-600 kcal/h-m²-k) y se definió (en Define) la temperatura máxima alcanzada dentro del reactor durante la reacción TMAX, el flujo molar a la entrada y salida del reactor del etano (C₂H₆) para la tabulación de la conversión de X. Estas pruebas se realizaron con una temperatura de servicio auxiliar TSA (°C) igual a TSA = (400, 440 y 480 °C), se

empleó una relación molar inicial de  $C_2H_6/O_2/N_2 = 9/7/84$  y una tasa de flujo total en la corriente IN-RX0 de  $4m^3/h$ .

#### Análisis de sensibilidad 2:

Se varió (en Vary) la temperatura del servicio auxiliar en el reactor, en un rango de (400-500°C) con un incremento de 5°C y se definió (en Define) el coeficiente global de transferencia de calor U, la temperatura máxima alcanzada dentro del reactor durante la reacción TMAX y el flujo molar a la entrada y salida del reactor del etano (C₂H₆ y O₂) para la tabulación de la conversión XC2H6 y XO2. El flujo molar a la salida del C2H4, CO, CO2 y H2O, para la tabulación del rendimiento de cada uno de estos compuestos (RC2H4, RCO, RCO2, RH2O). Estas pruebas se realizaron empleando una relación molar inicial de C₂H₆/O₂/N₂ = 9/7/84 84 y una tasa de flujo total en la corriente IN-RX0 de 4m³/h.

### Análisis de sensibilidad 3:

Se varió (en Vary) la temperatura del servicio auxiliar TSA (°C), en un rango de (440-485°C) con un incremento de 5°C y se definió (en Define) la temperatura de reacción a lo largo del reactor TRX (°C). Estas pruebas se realizaron empleando una relación molar inicial de C₂H₆/O₂/N₂ = 9/7/84 y una tasa de flujo total en la corriente IN-RX0 de 4m³/h.

#### Análisis de sensibilidad 4:

Se desactivó la especificación de diseño en Aspen Plus sobre mantener la P= 1 atm y se varió la presión en la corriente de alimentación ALM dentro de un rango de P= [1-5] atm. Se varió (en Vary) la temperatura del servicio auxiliar en el reactor, en un rango de (400-500°C) con un incremento de 5°C y se definió (en Define) el coeficiente global de transferencia de calor U, la temperatura máxima alcanzada dentro del reactor durante la reacción TMAX y el flujo molar a la entrada y salida del reactor del etano (C₂H₆) para la tabulación de la conversión XC2H6. El flujo molar a la salida del C2H4 para la tabulación del rendimiento del etileno (RC2H4). Estas pruebas se realizaron empleando una relación molar inicial de C₂H₆/O₂/N₂ = 9/7/84 84 y una tasa de flujo total en la corriente IN-RX0 de 4m³/h.

#### Análisis de sensibilidad 5:

Se varió la composición de la mezcla de vapor a la entrada en la corriente de alimentación ALM, de acuerdo a la Tabla 12.

	Componentes	Mezcla 1	Mezcla 2	Mezcla 3	Mezcla 4
	Etano C2H6	1	9	18	40
Mezcla	Oxígeno O2	20.79	19.11	17.22	12.6
aire	Nitrógeno N2	78.21	71.89	64.78	47.4

Tabla 12.Diferentes Mezclas de vapor (% mol) de los componentes del sistema de reacción.

Para cada composición de mezcla a la entrada en la corriente de alimentación ALM. Se varió (en Vary) la temperatura del servicio auxiliar en el reactor, en un rango de (400-500°C) con un incremento de 5°C y se definió (en Define) el coeficiente global de transferencia de calor U, la temperatura máxima alcanzada dentro del reactor durante la reacción TMAX y el flujo molar a la entrada y salida del reactor del etano (C₂H₆) para la tabulación de la conversión XC2H6. El flujo molar a la salida del C2H4 para la tabulación del rendimiento del etileno (RC2H4). Estas pruebas se realizaron empleando una relación molar inicial de C₂H₆/O₂/N₂ = 9/7/84 84 y una tasa de flujo total en la corriente IN-RX0 de 4m³/h

## Análisis de sensibilidad 6:

Se varió en la simulación base de Aspen plus V8.8 el caudal total a la entrada en la corriente de ALM, los valores fueron los siguientes 2, 4, 6, 8 y 10 m³/h a una temperatura de servicio auxiliar de 450°C. Estas pruebas se realizaron empleando una relación molar inicial de  $C_2H_6/O_2/N_2 = 1/20.29/78.21$  y un coeficiente global de tranferencia de calor de U= 165 kcal / h m² k. Se varió (en Vary) la longitud del reactor (m) y se definiió (en define) el perfil de temperatura TRX del sistema de reacción.

En el APENDICE III se presenta una síntesis de los análisis de sensibilidad realizados para este trabajo de tésis.

Para el cumplimiento del objetivo cuatro, a partir de los análisis de sensibilidad desarrollados, se estudiaron las correlaciones del sistema de reacción entre las variables de operación y condiciones críticas del proceso. (*Ver en el apartado de resultado 3.4*)

- Se analizó el comportamiento de la temperatura de reacción ante la variación de la temperatura del servicio auxiliar para un rango determinado del coeficiente global de transferencia de calor U [kcal/h-m²-k].
- 2. Se analizó la dependencia de la temperatura máxima de reactor, conversión del etano y temperatura de servicio auxiliar.
- Fracción mol de etileno respecto a la variación de U [kcal/h-m²-k] y selectividad de mediante la manipulación de la temperatura del servicio auxiliar manteniendo U constante.

# 2.5 MODELACIÓN Y SIMULACIÓN DEL PROCESO DE SEPARACIÓN

Como una contribución extra a este trabajo de tesis, se desarrolla la síntesis del proceso de separación del etileno en la descarga del reactor.

## Diseño conceptual del proceso de separación

A partir de las propiedades fisicoquímicas de los compuestos que participan en el sistema de reacción ( $C_2H_6$ ,  $O_2$ ,  $N_2$ ,  $C_2H_4$ ,  $H_2O$ ,  $CO y CO_2$ ) se clasificaron en condensables y no condensables, como se muestran en la Tabla 13, con el fin de proponer métodos de separación para la obtención del  $C_2H_4$ . De acuerdo a los valores de sus temperaturas de burbuja (TB) se ordenaron los compuestos del más volátil al menos volátil.

COMPONENTE	TEMPERATURA DE BURBUJA (TB)	TIPO
$N_2$	-195.806	No condensable
СО	-191.45	No condensable
$O_2$	-182.962	No condensable
$C_2H_4$	-103.74	No condensable
$C_2H_6$	-88.6	No condensable
$CO_2$	-78.45	No condensable
H ₂ O	100	Condensable

Tabla 13. Compuestos condensables y no condensables del ODH-Et

Datos obtenidos en el simulador Aspen plus V8.8

A partir de los diagramas de equilibrio T-xy de los compuestos a la salida del reactor (Tabla 14), se identificación los componentes más fáciles a separar así como el requerimiento de etapas múltiples en la separación.



Tabla 14. Diagramas de equilibrio de pares de componentes del sistema de reacción ODH-Et



Datos obtenidos en el simulador Aspen plus V8.8, a una P=14.69 y P=24.69

A partir de los diagramas de equilibrio, se observó que el  $(O_2 - C_2H_4)$  y  $(C_2H6-H_2O)$ son fáciles de separar, requiriendo etapas de separación Flash y/o separación por condensación parcial, mientras que  $(C_2H_4-C_2H_6)$  y  $(C_2H_6-CO_2)$  requieren de mayor número de etapas de equilibrio por lo que se identifica el uso de columnas de separación.

## Heurísticas de diseño

A continuación en la Tabla 15, se presentan las heurísticas consideradas para la síntesis del proceso de separación.

Tabla 15. Heurísticas para la síntesis del proceso de separación

PROPUESTO POR:	HEURÍSTICAS
	1. No purgar especies de valor, tóxicas o peligrosas. Agregar separadores para especies de valor.
Seider et al. (2003)	2. Para la presión del condensador y reboiler, por heurística se tiene que $P_{Alim} = P_D + 7.5$ psia $P_R = P_D + 10$ psia, en donde $\Delta P = 10$ esi a
	3. La relación de reflujo es $1.1 - 1.3$ veces la relación de reflujo mínima.
	4. Use secuenciación de columnas para la separación de mezclas multicomponentes.
	5. Realice la separación más fácil primero, es decir, la menos exigente de bandejas y reflujo, y deje la de mayor dificultad al último.
Turton et al. (2012)	6. Cuando las concentraciones en la alimentación varían ampliamente pero las volatilidades relativas no lo hacen, eliminar los componentes en orden de concentración decreciente.
	7. Se recomienda un factor de seguridad del 10% del número de bandejas calculado con los mejores medios.
	8. Las eficiencias de la bandeja para la destilación de hidrocarburos ligeros y soluciones acuosas son del 60-90%.

A partir de los diagramas de equilibrio y heurísticas de diseño se tiene lo siguiente:

De acuerdo a la heurística 1, no se recomienda agregar purgas para los componentes del sistema de reacción ya que el  $C_2H_4$  es producto principal, el  $C_2H_6$  obtenido a la salida del reactor se puede recircularse en la entrada del reactor al igual que el  $N_2$  y  $O_2$ . Debido a la mezcla multi componente obtenida a la salida del reactor, el proceso de separación estará conformado por un tren de separación de acuerdo a la heurística 4. En caso del uso de una torre de destilación, considerar las heurísticas 2 y 3. Conforme la heurística 5 y al diagrama de equilibrio ( $C_2H_6-O_2$ ), el  $H_2O$  es el primer componente en ser separado, debido a que es el de menor dificultad. Acorde a la heurística 6, el  $N_2$  deberá ser el siguiente componente en ser separado del sistema, sin embargo, el  $N_2$  y  $O_2$  en mezcla puede considerarse como un corriente producto principal en el proceso de separación para ser recirculados al reactor como materia prima. Las heurísticas 7 y 8, son consideradas en el dimensionamiento.

Se realizó un diagrama de bloques como primera instancia para el tren de separación, el cual se muestra en la Figura 18.



Figura 18. Diagrama de bloques del proceso de separación para la recuperación del C₂H₄

En el diagrama de bloques del proceso de separación, se observa que la corriente que sale del reactor F2, se encuentra a una T=450°C y presión atmosférica, la cual entra al tanque de separación SEP1, donde el H₂O sale por el fondo en la corriente F3, y los demás compuestos salen por el domo (C₂H₄, C₂H₆, O₂, CO y CO₂) en la corriente F4. Seguido, la corriente F4 entra al tanque flash SEP2, en donde del fondo en la corriente F5, sale el C₂H₄, C₂H₆ y CO, mientras que en el domo, en la corriente F6 sale O₂, CO y el N₂, el cual puede ser recirculado como materia prima. Después la corriente F5, entra a una columna de destilación SEP3, la cual en el destilado en la corriente F8 saldrá C₂H₆, el cual podrá ser recirculado a la entrada del reactor, mientras que en el fondo, en la corriente F7 se obtendrá C₂H₄ y trazas de CO₂.

## Análisis paramétrico del proceso de separación

A partir del diagrama de bloques, se realizó el diagrama del proceso de separación en el simulador Aspen plus v8.8, Figura 19.



*Figura 19.* Diagrama del proceso de separación para la recuperación de  $C_2H_4$  en Aspen plus v8.8 En la elección de la columna de destilación en Aspen plus v8.8, se eligió a la columna de destilación DSTWU, la cual se resuelve mediante métodos cortos.

Para determinar las condiciones óptimas del proceso de separación, se realizaron análisis de sensibilidad, las especificaciones se muestran en la Tabla 16. Los siguientes análisis de sensibilidad se realizaron con la intensión del encontrar las condiciones óptimas de separación (P, T) en los tanques Flash (SEP1 y SEP2).

Equipo	Define	Vary	Rango
SEP1	Flujo molar de: CO _{gas} ,	TEMP (H2)	[-20, 20] °C
	$\begin{array}{llllllllllllllllllllllllllllllllllll$	PRESIÓN (C2)	[1, 10] atm
SEP2	Flujo molar de: O _{gas} ,	TEMP (H3)	[-183, -100] °C
	Oliq, C ₂ H _{4Liq} , Q _{H3} ,	PRESIÓN (C3)	[1, 20] atm
	POT _{C3}		

Tabla 16. Análisis de sensibilidad para el tanque Flash SEP1 y SEP2.

Datos colocados en el simulador Aspen plus v8.8

De acuerdo al análisis de sensibilidad realizado para el tanque flash SEP1, se obtuvo el gráfico mostrado en la Figura 20, en donde se varía la temperaturas en el intercambiador de calor (H2) en un rango de [-20, 20] °C vs la recuperación de CO₂ y H₂O en la corriente LIQUIDO a la salida del SEP1 para distintas presiones en el compresor C3 [1, 10] atm. Se observa que para el rango de temperatura y presión establecido, el CO₂ en la corriente LÍQUIDO siempre es cero (línea rosa), mientras que el H₂O conforme aumenta la temperatura disminuye el flujo molar en la corriente LÍQUIDO (línea café), por lo que para tener un mayor flujo molar del H₂O en la corriente LIQUIDO es conveniente trabajar a una T=-20 °C; también se observa la misma tendencia para las distintas presiones tanto para el CO₂ como el H₂O, por lo que es conveniente trabajar a 1 atm. Con respecto al consumo energético, incrementa conforme aumenta la temperatura; por lo que las condiciones óptimas de separación para el primer tanque Flash SEP1, es trabajar a una P=1atm y T= -20 °C.



En las siguientes Figuras 21 y 22, se presentan los resultados del análisis de sensibilidad realizado para el tanque flash SEP2. La Figura 21, muestra un gráfico para diferentes temperaturas en el intercambiador de calor H3 vs el flujo molar en kg/h del O₂ en la corriente VAP y el C₂H₄ en la corriente LIQ, para distintos valores de presiones en el compresor C3. Y en la Figura 22 se muestra una gráfica para distintos valores de la temperatura en el intercambiador H3 vs el consumo energético para distintos valores de presión en el compresor C3. De acuerdo a lo observado en ambos gráficos, es conveniente trabajar el SEP2 a una P= 9 atm y T=157 °C, esto de acuerdo al grado de separación del C₂H₄ y O₂ y consumo energético. Es importante considerar el consumo energético, debido a que de este depende el refrigerante a utilizar para el intercambiador de calor y del costo del
refrigerante dependiendo del costo de éste, ya que podría elevar considerablemente el proceso de separación.

	REFRIGERANTE	CAPACIDAD	
	*Nitrógeno	-196 °C	•
	*Dióxido de carbono	-196 °C	-
	**R-504	-30 a -70 °C	-
	*** <b>R-13</b>	-40 a 101 °C	
	*** <b>R-23</b>	-40 a 101 °C	
0.0019 0.0019 0.0018 0.0017 0.0016 0.0016 0.0015 0.0015 0.0014 0.0050 0.0014 0.055 0.0014 0.055 0.0014 0.055 0.0010 9.e-4 10.005 0.005 0.005 0.0010 9.e-4 10.005 0.005 0.005 0.0015 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.0010 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0	Facente: "(Lander 2013) 2013) -180 -175 -170 -165 -160 -155	-150 -145 -140 -135 -130 -125 - VARY 1 H3 PARAM TEM PC	Y2 C3 PARAM PRESBAR = 1.0133         Y2 C3 PARAM PRESBAR = 1.0339         Y2 C3 PARAM PRESBAR = 5.0663         Y2 C3 PARAM PRESBAR = 1.0927         Y2 C3 PARAM PRESBAR = 9.1192         Y2 C3 PARAM PRESBAR = 1.027         Y2 C3 PARAM PRESBAR = 1.1458         Y2 C3 PARAM PRESBAR = 11.1458         Y2 C3 PARAM PRESBAR = 11.1458         Y2 C3 PARAM PRESBAR = 11.1458         Y2 C3 PARAM PRESBAR = 10.2516         Y2 C3 PARAM PRESBAR = 1.0265         Y2 C3 PARAM PRESBAR = 1.0266         Y2 C3 PARAM PRESBAR = 1.0436         Y2 C3 PARAM PRESBAR = 1.1458         Y2 C3 PARAM PRESBAR = 1.12518         Y2 C3 PARAM PRESBAR = 1.2518         Y2 C3 PARAM PRESBAR = 1.02518         Y2 C3 PARAM PRESBAR = 1.02518         Y2 C3 PARAM PRESBAR = 1.0436
L Figu	ura 21. Análisis de sensibilidad del	tanque Flash SEP2	

Tabla 17. Refrigerantes





Figura 22. Análisis de sensibilidad del tanque Flash SEP2 del consumo energético

Las especificaciones de diseño para la columna de destilación CD fueron las de acuerdo a la heurística 3, ya que la presión del condensador y reboiler colocadas fueron de 124.71 psia y 134.71 psia respectivamente, mientras que la relación de reflujo inicialmente fue de un valor 1.3 la relación de reflujo mínimo, el cual después se modificó de acuerdo al resultado arrojado en el apartado de resultados de la columna de destilación CD, en Aspen plus v8.8, con un valor de 2.29.

# CAPITULO 3 RESULTADOS

El presente capítulo está dedicado a presentar, analizar y discutir los resultados generados a partir de lo realizado en la metodología. Los resultados siguientes, están presentados en tres etapas. En la etapa uno de resultados se muestra las ecuaciones de velocidad de reacción en función de variables medibles (presión parcial) y los factores A y B calculados del término de adsorción y fuerza impulsora, del sistema de reacción. En la etapa dos de resultados, se presenta un diagrama del proceso del sistema de reacción ODH-Et sobre el catalizador MoVTeNbO/TiO₂ realizado en Aspen Plus V8.8, la validación del modelo cinético y análisis paramétrico del sistema de reacción. Finalmente, en la etapa tres de resultados, se presenta el modelo del proceso de separación para la recuperación de etileno.

## 3.1 RESULTADOS DEL DISEÑO CONCEPTUAL DEL SISTEMA DE REACCIÓN

La Tabla 18 muestra el valor del factor pre-exponencial (k) calculado a partir del valor del logaritmo natural del factor pre-exponencial (A') reportado en la literatura por Che-Galicia et. at., (2015), el cual fue introducido a Aspen plus v8.8.

A' (mmol/gcat-h)	exp (A')	Cambio de unidades (kmol/kg cat-seg)
A1' = 5.5	244.6919323	6.797E-05
A2' = 0.686	1.9857566	5.52E-07
A3' = 1.58	4.854955811	1.3486E-06
A4' = 2.6	13.46373804	3.73993E-06
A5' = 0.787	2.196796142	6.10221E-07

Tabla 18. Factor pre-exponencial de Arrhenius.

#### Velocidades de reacción

La Tabla 10, presenta las ecuaciones de velocidad de reacción (Ec. 2.1 - Ec. 2.5), en función de la presión parcial (variable medible) y de acuerdo al formato que Aspen plus V8.8 requiere (Ec. 2.12).

Velocidad de reacción	No. Ecuación
$r_{1} = \frac{k_{1} (K_{Q} P_{O_{2}})^{05} P_{C H_{2}}}{1 + (K_{Q} P_{Q})^{05} + K_{H} O_{2}^{P} H O_{2}}$	Ec. 3. 1
$\mathbf{r}_{2} = \frac{\mathbf{k}_{2} \left(\mathbf{K}_{Q} \ \mathbf{P}_{O_{2}}\right)^{0.46} \mathbf{P}_{C \ H}}{\left(1 + \left(\mathbf{K}_{O \ 2} \mathbf{P}_{O \ 2}\right)^{0.05} + \mathbf{K}_{H \ O} \mathbf{P}_{H_{2} \ O}\right)^{0.0922}}$	Ec. 3. 2
$r_{3} = \frac{k_{3} (K_{O} P_{O_{2}})^{0453} P_{C H_{2.6}}}{(1 + (K_{O_{2}}P_{O_{2}})_{2}^{0.5} + K_{H O}P_{H_{2.0}})^{0906}}$	Ec. 3. 3
$r_{4} = \frac{k_{4} (K_{Q} P_{O_{2}})^{06} P_{C H_{2.6}}}{(1 + (K_{O_{2}} P_{O_{2}})_{2}^{0.5} + K_{2H O} P_{H_{2}O})^{123}}$	Ec. 3. 4
$r_{5} = \frac{k_{5} (K_{0} P_{0})^{04525} P_{C H_{2} 6}}{(1 + (K_{0} P_{0})^{0})^{0}} + K_{H 0} P_{H_{2} 0}^{0905}}$	Ec. 3. 5

Tabla 19. Ecuaciones de velocidad de reacción en función de presiones parciales.

Donde  $K_{O_2}$  es la constante de equilibrio de absorción del  $O_2$  y  $K_{H_2O}$  es la constante de equilibrio adsorción del  $H_2O$ .

#### Parámetros A y B

Los valores calculados para los factores A y B para el término de adsorción y fuerza impulsora, para las ecuaciones de velocidad reacción calculadas a partir de la Ec. 2.14 y Ec. 2.15, se muestran en la Tabla 20 y Tabla 21.

Tabla 20.Factores A y B para el término deadsorción.

Para el término de adsorción					
O ₂ N=0.5, Rx H ₂ O N=1, Rx					
A	В	А	В		
-16.721293	2742.206	-26.34002	15394.84		

Es el mismo valor para todas las ecuaciones de velocidad (r1-r5).

Tabla 21. Factores A y B, para el término de la fuerza impulsora.

Para el término fuerza impulsora							
O ₂	Α	В					
r₁, n=0.5	-16.721293	2742.2066					
r ₂ , n=0.461	-15.417032	2528.3144					
r ₃ , n=0.453	-15.149492	2484.4391					
r ₄ , n=0.615	-20.567191	3372.9141					
r₅, n=0.452	-15.132770	2481.696					

#### Diagrama de bloque del sistema de reacción

En la Figura 23 se presenta el diagrama de bloques con las operaciones principales y secundarias para el sistema de reacción ODH-Et sobre el catalizador MoVTeNbO/TiO₂.



Figura 23. Diagrama de bloques del proceso del sistema de reacción DHO-Et

En el diagrama de bloques de la Figura 23 se observa que la corriente C1 con la materia prima (C2H6, O2, y N2) entra a un compresor B1 a condiciones ambiente T=20°C y P=1 atm, en donde sale la corriente C2 y entra a un intercambiador de calor H1, para elevar la temperatura de la corriente C3 a una T=200 °C, la cual después entrar al reactor R1. Al reactor entra la corriente C5 (servicio auxiliar) el cual eleva la temperatura dentro del reactor, ya que la reacción inicia a una T>327°C y sale la corriente C6 (servicio auxiliar). La corriente C4 sale del reactor con el producto obtenido despúes de haberse llevado la reacción (C₂H₄, C₂H₆, O₂, N₂, H₂O, CO y CO₂).

#### Discusión:

Se colocaron de forma adecuada cada uno de las condiciones de operación y datos cinéticos del sistema de reacción en el simulador Aspen plus para obtener significancia en el proceso ODH-Et. El diagrama de bloques del sistema de reacción ODH-Et representa adecuadamente el proceso contemplando heurísticas de diseño.

## 3.2 RESULTADOS DEL SISTEMA DE REACCIÓN EN ASPEN PLUS V8.8

En esta segunda etapa de resultados, se muestra la síntesis del diagrama de flujo del sistema de reacción ODH-Et realizado en Aspen Plus V8.8, la validación del modelo y el análisis paramétrico del sistema de reacción.

#### Diagrama de flujo del sistema de reacción en Aspen Plus V8.8

En la Figura 24 se presenta el diagrama de flujo del sistema de reacción realizado en Aspen plus V8.8 a partir de lo detallado en la metodología (*ver apartado 2.2 de metodología*).



Figura 24. Diagrama de flujo del sistema de reacción ODH-Et sobre el catalizador en Aspen plus V8.8

#### Validación del modelo

En la Tabla 22 y Tabla 24 se muestran de manera sintetizada los análisis de sensibilidad realizados para la validación del modelo del sistema de reacción ODH-Et.

Tabla 22. Análisis de sensibilidad 1 para la validación del modelo del sistema de reacción ODH-Et realizado en Asen plus V8.8

Análisis de	VARY	DEFINE	TABULAR	
sensibilidad				
1	Temperatura de servicio	U, TMAX, NRL0 y	TSA, U, $XC_2H_6$ ,	
Validación	auxiliar TSA= [400-500] °C	NRL para el C ₂ H ₆ y	XO ₂ , TMAX,	
del modelo	Con incrementos de 5°C	NRL para el C ₂ H ₄ .	RC ₂ H ₄ , RCO,	
			RCO ₂ , RH ₂ O.	

Donde U=coeficiente global de transferencia de calor (kcal/h-m²-k), TMAX= temperatura máxima dentro del reactor (°C), NRL0 y NRL para el C₂H₆ = flujo molar a la entrada y a la salida del reactor del etano, respectivamente (kmol/h), NRL para C₂H₄= flujo molar a la salida del reactor del etileno (kmol/h), TSA=temperatura de servicio auxiliar (°C), XC₂H₆=conversión del etano, XO₂=conversión del oxígeno, RC₂H₄= rendimiento del etileno, RCO=rendimiento del monóxido de carbono, RCO₂=rendimiento del dióxido de carbono, RH₂O= rendimiento del agua; [XC₂H₆, XO₂, RC₂H₄, RCO, RCO₂, RH₂O]=datos obtenidos a la salida del reactor.

El análisis de sensibilidad 1 se realizó empleando una relación molar inicial de  $C_2H_6/O_2/N_2$ = 9/7/84 y una tasa de flujo total en la corriente IN-RX0 de 4m³/h.

La tabla 23 presenta los resultados generados del análisis de sensibilidad 1 para la validación del modelo del sistema de reacción ODH-Et. Donde se observa el coeficiente global de transferencia de calor U (kcal/h-m²-k), la conversión (X) del C₂H₆ a la salida del reactor y la máxima temperatura alcanzada dentro del reactor, para cada temperatura del servicio auxiliar TSA (°C).

Tabla 23. U, XC2H6 y TMAX a diferentes TSA.

TSA	$\mathbf{U}$	X	TMAX
°C	kcal / h-m ² -	C ₂ H ₆	°C
	K		
400	165	0.08450112	401.582541
440	165	0.21582613	446.166531
480	165	0.48820174	517.350596
Datos obtenio	los en el simulad	or Aspen Plus V	88

Datos obtenidos en el simulador Aspen Plus V8.8 TSA=temperatura de servicio auxiliar (°C), U=coeficiente global de transferencia de calor (kcal/h-m²-k), XC2H6=conversión del etano a la salida del reactor, TMAX=temperatura máxima alcanzada durante la reacción (°C).

En la Figura 21 se muestra un gráfico de la longitud del reactor (m) vs la temperatura del sistema de reacción (°C); se obtuvieron tres líneas de acuerdo a la temperatura del servicio auxiliar TSA, para un TSA= [400, 440 y 480 °C]. El coeficiente global de tranferencia de calor utilizado en esta simulación fue de U= 165 kcal / h m² k.



*Figura 25.* Longitud del reactor (m) vs la temperatura en el sistema de reacción (°C), para tres distintos valores de TSA= 400, 440 Y 480 °C

En la Figura 25, los puntos (rojo, azul y negro), son datos experimentales generados en la literatura por Che-Galicia et al. (2015) y las lineas continuas son los datos generados en el simulador de Aspen Plus. El cálculo del error porcentual (Ec. 2.22) dio un valor del 5 %, por lo que a partir de ello, se concidera que el modelo de simulación generado en Aspn Plus para la representación del sistema de reacción ODH-Et sobre el catalizador MoVTeNbO/Ti₂O, es adecuado.

Tabla 24.	Análisis	de sens	sibilidad 2	2 para 1	a valid	ación d	lel r	modelo	del	sistema	de	reacción	ODH-Et
realizado	en Asen	plus V8	8.8										

Análisis de	VARY	DEFINE	TABULAR
sensibilidad			
2	Temperatura de servicio	U, TMAX, NRL0 y	TSA, U, $XC_2H_6$ ,
Validación	auxiliar TSA= [400-500]	NRL, para el C ₂ H ₆ y	XO ₂ , TMAX,
del modelo	Con incrementos de 5°C	NRL, para el C ₂ H ₄ .	RC ₂ H ₄ , RCO,
			RCO ₂ , RH ₂ O.

Donde U=coeficiente global de transferencia de calor (kcal/h-m²-k), TMAX= temperatura máxima dentro del reactor (°C), NRL para el C₂H₆ = flujo molar a la salida del reactor, del etano (kmol/h), NRL para C₂H₄= flujo molar a la salida del reactor del etileno (kmol/h) [flujo molar (kmol/h)], TSA=temperatura de servicio auxiliar (°C), XC₂H₆=conversión del etano, XO₂=conversión del oxígeno, RC₂H₄= rendimiento del etileno, RCO=rendimiento del monóxido de carbono, RCO₂=rendimiento del dióxido de carbono, RH₂O= rendimiento del agua; [XC₂H₆, XO₂, RC₂H₄, RCO, RCO₂, RH₂O]=datos obtenidos a la salida del reactor.

El análisis de sensibilidad realizado de la Tabla 24, se llevó acabo empleando una relación molar inicial  $C_2H_6/O_2/N_2 = 9/7/84$ , un U=165 kcal /h-m²-k y una tasa de flujo total en la corriente IN-RX0 de 4m³/h.

A continuación en la Figura 26 se presentan los resultados generados del análisis de sensibilidad 2.



*Figura 26.* Gráfico 1-Conversión y rendimiento de los componentes ( $C_2H_4$ ,  $CO_2$ , CO y  $H_2O$ ) a lo largo del reactor. Líneas continuas: datos obtenidos en Aspen Plus V8,8 y puntos: datos reportados en la literatura por Che-Galicia et al.(2015). Grafico a) es a una TSA= 400 °C, para el gráfico b) es a una TSA= 440 °C y para el gráfico c) es a una TSA= 480 °C.

A modo de comparación (Figura 26), los datos reportados en la literatura por Che-Galicia et al., (2015) y los obtenidos en el simulador Aspen Plus, y de acuerdo a el cálculo del error porcentual (Ec. 2.22) dio un valor del 5 %, por lo que se determina que el modelo empleado

en Aspen Plus representa adecuadamente al sistema de reacción ODH-Et sobre el catalizador MoVTeNbO/TiO₂.

#### Discusión:

La validación del modelo de acuerdo a lo reportado en la literatura Che-Galicia et al (2015) en el simulador Aspen Plus representó adecuadamente los datos cinéticos obtenidos en la literatura con un margen de error mínimo (error porcentual = 5 %).

## 3.3 RESULTADOS DEL ANÁLISIS PARAMÉTRICO

A continuación se presentan los resultados del análisis paramétrico realizado al sistema de reacción de ODH-Et sobre el catalizador MoVTeNbO/TiO₂.

#### Análisis de sensibilidad 1:

En la Tabla 25 se presenta la síntesis del análisis de sensibilidad 1 realizado en el simulador

Aspen plus v8.8, sobre el sistema de reacción ODH-Et sobre el catalizador MoVTeNbO/TiO2.

Tabla 25 Análisis de sensibilidad 1 realizado al sistema de reacción ODH-Et sobre al catalizador MoVTeNbO/TiO₂ en Asen plus V8.8

Análisis de	VARY	DEFINE	RESULTADO
sensibilidad			
	Coeficiente global de	TMAX, NRL0 y NRL	
	transferencia de calor	para el C ₂ H ₆	TMAX, XC ₂ H ₆ , U
1	U [10-600] Kcal /h-m ² -K		

Donde TMAX=temperatura máxima alcanzada en el reactor químico, NRL0 y NRL para el  $C_2H_6$  = flujo molar a la entrada y a la salida del reactor del etano, respectivamente (kmol/h), U=coeficiente global de transferencia de calor (kcal/h-m²-k) y XC₂H₆=conversión del etano a la salida del reactor.

El análisis de sensibilidad 1 se llevó a cabo a tres temperaturas de servicio auxiliar (TSA) distintas, TSA= (400, 440 y 480) °C; en el cual se empleó una relación molar inicial de  $C_2H_6/O_2/N_2 = 9/7/84$  y una tasa de flujo total en la corriente IN-RX0 de 4m³/h.

La Figura 27 tiene dos gráficos generados como resultado del análisis de sensibilidad 1, gráfico a) y gráfico b). Para el gráfico a) se muestra una gráfica del coeficiente global de

transferencia de calor (U) vs la conversión del etano (XC₂H₆), para tres temperaturas de servicio auxiliar distintas (TSA=400, 440 y 480 °C); en el cual, se observa que para distintos valores del coeficiente global de transferencia de calor (U), la conversión del etano a la salida del reactor se mantiene regularmente constante; más sin en cambio también se observa que la conversión del etano (XC₂H₆), varía para los distintos valores del servicio auxiliar; siendo el más conveniente el de TSA=480°C, ya que es el que genera más alta conversión del etano a la salida del reactor.

Por otro lado, para el gráfico b), se tiene una gráfica del coeficiente global de transferencia de calor (U) vs la temperatura máxima alcanzada en el reactor (TMAX) °C, para tres temperaturas de servicio auxiliar distintas (TSA=400, 440 y 480 °C). Se observa que para distintos valores del coeficiente global de transferencia de calor U, no hay una variación significativa en la variación de la TMAX; mas sin en cambio la TMAX en el reactor es distinta para los distintos valores de TSA °C, lo cual es de especial interés y cuidado, ya que como se mencionó en el marco teórico el catalizar MoVTeNb/TiO2 se descompone a T>500 °C.



*Figura 27.* Grafico a) conversión del etano para diferentes valores de U kcal/h-m²-k, b) TMAX °C para diferentes valores de U kcal/h-m²-k. Ambos gráficos para tres distintos valores de TSA distintas TSA= 400, 440 y 480 °C

#### Análisis de sensibilidad 2:

En la Tabla 26 se presenta la síntesis del análisis de sensibilidad 2 realizado en el simulador Aspen plus v8.8, sobre el sistema de reacción ODH-Et sobre el catalizador MoVTeNbO/TiO₂

Tabla 26. Análisis de sensibilidad 2 realizado al sistema de reacción ODH-Et sobre al catalizador MoVTeNbO/TiO₂ en Asen plus V8.8

Análisis de	VARY	DEFINE	RESULTADO
sensibilidad			
	Temperatura de servicio	U, TMAX, NRL0 y	
	auxiliar TSA= [400-500]	NRL, para el C ₂ H ₆ ,	TSA, U, $XC_2H_6$ , $XO_2$ ,
2	Con incrementos de 5°C	O ₂ NRL0, O ₂ NRL,	TMAX, RC ₂ H ₄ , RCO,
		C ₂ H ₄ NRL, CONRL,	RCO ₂ , RH ₂ O.
		CO ₂ NRL Y H ₂ ONRL.	

Donde TSA=temperatura de servicio auxiliar (°C), U=coeficiente global de transferencia de calor (kcal/h- $m^2$ -k), TMAX=temperatura máxima alcanzada en el reactor químico (°C), NRL0 y NRL para el C₂H₆ = flujo molar a la entrada y a la salida del reactor del etano, O₂NRL0 y O₂NRL= flujo molar a la entrada y a la salida del reactor del etano, O₂NRL0 y O₂NRL= flujo molar a la entrada y a la salida del reactor del etano, C₂NRL= flujo molar a la entrada y a la salida del reactor del etano, CO₂NRL= flujo molar a la salida del reactor del oxígeno, C₂H₄NRL= flujo molar a la salida del reactor del etano, CO₂NRL= flujo molar a la salida del reactor de dióxido de carbono, H₂ONRL=flujo molar a la salida del reactor de agua, [flujo molar (kmol/h)], TSA= temperatura de servicio auxiliar (°C), XC₂H₆=conversión del etano, XO₂=conversión del oxígeno, RC₂H₄= rendimiento del etileno, RCO=rendimiento del monóxido de carbono, RCO₂, RH₂O]=datos obtenidos a la salida del reactor.

El análisis de sensibilidad 2 se realizó empleando una relación molar inicial de  $C_2H_6/O_2/N_2$ = 9/7/84 y una tasa de flujo total en la corriente IN-RX0 de 4m³/h.

En la Figura 28 se muestran los resultados obtenidos del análisis de sensibilidad 2. Se observan tres gráficos, el inciso a) es un gráfico para diferentes temperaturas de servicio auxiliar TSA (°C) vs la temperatura máxima alcanzada dentro del reactor TMAX (°C); del cual se observa que entre más alto sea el valor de TSA, el valor de TMAX en el sistema de reacción es alto, para un valor de TSA= 485 °C la TMAX se encuentra cerca de los 500 °C; mas sin en cambio también de observa que para TSA > 485 °C la TMAX en el sistema de reacción disminuye, esto se debe principalmente a que Aspen Plus arrojara distintos valores de U, de tal forma que no sobrepasara la TMAX= 500 °C de acuerdo a la especificación de

diseño, (*ver apartado 2.4 de metodología*), esto debido a que a T > 500°C el catalizador se descompone.

El inciso b) se muestra un gráfico para diferentes valores de la temperatura de servicio auxiliar TSA (°C) vs la conversión del etano y oxígeno a la salida del reactor  $X_{C2H4}$  y  $X_{O2}$ ; en el cual se observa que conforme aumenta la TSA en el sistema de reacción, la  $X_{C2H6}$  y  $X_{O2}$ aumenta, esto es conveniente ya que lo que se quiere es que reaccione la mayor cantidad posible de  $C_{2H6}$ , sin embargo se observa también que para valores de TSA mayores a 485 °C la  $X_{C2H6}$  disminuye, esto se debe principalmente a la influencia que tiene el valor generado por Aspen de U.

Finalmente en el inciso c) se muestra un gráfico para distintos valores de la temperatura del servicio auxiliar TSA (°C) vs el rendimiento etano, monóxido de carbono, dióxido de carbono y agua (RC2H4, RCO, RCO2, RH2O); en el cual se observa un incremento en los rendimientos conforme aumenta el valor de la TSA, pero para valores mayores de TSA= 480 °C los rendimientos de estos compuestos disminuyen, estos se debe principalmente al valor de U arrojado por Aspen PLUS V8.8.





*Figura* 28. Grafico a) TMAX °C para distintos valores de TSA °C, b) conversión de etano y oxígeno  $(C_2H_4 \text{ y } O_2)$  para distintos valores de TSA °C y c) rendimiento de etileno, dióxido de carbono, monóxido de carbono y agua  $(C_2H_4, CO_2, CO \text{ y } H_2O)$  para distintos valores de TSA °C.

En la Tabla 27 se muestra la TMAX para distintas TSA en donde para un valor de TSA=475°C se observa una TMAX=485 °C, y para una TSA=485 °C se observa un valor de TMAX= 496 °C, para un valor de U= 396 y 600 kcal/h-m2-k respectivamente.

TSA °C	U Kcal/h-m2-k	TMAX °C
400-470	165	400- 490
475	486	486
480	493	493
485	496	496
490-500	10	441-458

Tabla 27. U y TMAX para distintos valores de TSA.

Valores generados en Aspen Plus V8.8 del análisis de sensibilidad 2

En la Tabla 28 se sintetizan los valores para TSA y U para los cuales el valor de la conversión de etano ( $X_{C2H6}$ ) y rendimiento de etileno ( $R_{C2H4}$ ) fueron los más altos (se observan en color rojo).

TSA °C	U Kcal/h-	TMAX °C	X C2H6	X O2	R C2H4	R CO	R CO2	R H2O
	m2-k							
440	165	446.166531	0.21582615	0.17693144	0.20258309	0.0200578	0.00642831	0.24231226
445	165	452.369356	0.24030799	0.20070888	0.2242988	0.0241493	0.00786907	0.27232637
450	165	458.853266	0.26696842	0.22748755	0.24764703	0.02902723	0.00961555	0.30561119
455	165	465.701213	0.29594227	0.25768547	0.27265062	0.03484811	0.01173519	0.34252558
460	165	473.017073	0.32735785	0.29181587	0.29929262	0.04181342	0.01431704	0.3834883
465	165	481.135209	0.36136016	0.33057357	0.32751568	0.05020151	0.01748745	0.42904913
470	165	490.349865	0.39820153	0.3750525	0.35725929	0.06043992	0.02144454	0.480086
475	395.167076	485.882312	0.40717524	0.3848881	0.36482546	0.06255911	0.02214045	0.4918748
480	395.167076	493.088424	0.44044526	0.42710376	0.39099066	0.07278922	0.02611997	0.53935445
485	600	495.851615	0.46683787	0.4615684	0.41141116	0.08140286	0.02945056	0.5776913

Tabla 28. Valores generados en Aspen Plus V8.8 del análisis de sensibilidad 2.

#### Análisis de sensibilidad 3

En la Tabla 29 se presenta la síntesis del análisis de sensibilidad 3 realizado en el simulador Aspen plus v8.8, sobre el sistema de reacción ODH-Et sobre el catalizador MoVTeNbO/TiO₂

Tabla 29. Análisis de sensibilidad 3 realizado al sistema de reacción ODH-Et sobre al catalizador MoVTeNbO/TiO₂ en Asen plus V8.8

Análisis de	VARY	DEFINE	RESULTADO
sensibilidad			
	Temperatura de servicio auxiliar	Perfil de temperaturas	
	TSA= [440-485]	TRX, TMAX, NRL0 y	TSA, TRX, X,U
3	Con incrementos de 5°C	NRL para el C ₂ H ₆	

Donde TSA=temperatura de servicio auxiliar (°C), U=coeficiente global de transferencia de calor (kcal/h- $m^2$ -k), TRX =perfil de temperatura a lo largo del reactor (°C), TMAX=temperatura máxima alcanzada en el reactor químico (°C), NRL0 y NRL para el C₂H₆ = flujo molar a la entrada y a la salida del reactor del etano (kmol/h).

Estas pruebas se realizaron empleando una relación molar inicial de  $C_2H_6/O_2/N_2 = 9/7/84$  y una tasa de flujo total en la corriente IN-RX0 de 4m³/h.

En la Figura 29 se presenta los resultados generados del análisis de sensibilidad 3, el cual es un gráfico de la longitud del reactor (m) vs el perfil de temperatura a lo largo del reactor (TRX °C), para distintos valores de temperatura de servicio auxiliar (TSA °C); en el cual se observa que el perfil de temperaturas TRX incrementa conforme aumenta el valor de la TSA.



Figura 29. Perfiles de temperatura TRX °C a lo largo del reactor para distintos valores de TSA °C

#### Análisis de sensibilidad 4:

En la Tabla 30 se presenta la síntesis del análisis de sensibilidad 4 realizado en el simulador Aspen plus v8.8, sobre el sistema de reacción ODH-Et sobre el catalizador MoVTeNbO/TiO₂ Tabla 30. Análisis de sensibilidad 4 realizado al sistema de reacción ODH-Et sobre al catalizador MoVTeNbO/TiO₂ en Asen plus V8.8. Para diferentes presiones P=[1, 2, 3, 4 y 5] atm.

Análisis de sensibilidad	VARY	DEFINE	TABULAR
	Temperatura de servicio auxiliar	U, TMAX, NRL0 y	TSA, U, $XC_2H_6$ ,
	TSA= [400-500]	NRL, para el C ₂ H ₆ y	XO ₂ , TMAX, RC ₂ H ₄ ,
4	Con incrementos de 5°C	NRL, para el C ₂ H ₄ .	RCO, RCO ₂ , RH ₂ O.

Donde TSA=temperatura de servicio auxiliar (°C), U=coeficiente global de transferencia de calor (kcal/h- $m^2$ -k), TMAX=temperatura máxima alcanzada en el reactor químico (°C), NRL0 y NRL para el C₂H₆ = flujo molar a la entrada y a la salida del reactor del etano (kmol/h), NRL para el C₂H₄= flujo molar a la salida del reactor del etano (kmol/h), NRL para el C₂H₄= flujo molar a la salida del reactor del etano, XO₂=conversión del oxígeno, RC₂H₄= rendimiento del etileno, RCO=rendimiento del monóxido de carbono, RCO₂=rendimiento del dióxido de carbono, RH₂O= rendimiento del agua; [XC₂H₆, XO₂, RC₂H₄, RCO, RCO₂, RH₂O]=datos obtenidos a la salida del reactor.

En la Figura 30 se muestran los resultados generados en Aspen Plus V8.8 del análisis de sensibilidad 4, en donde se observa el grafico a) para distintos valores de TSA (°C) vs  $XC_2H_6$  y el gráfico b) para distintos valores de TSA (°C) vs  $RC_2H_4$ , ambos gráficos para distintos valores de presión P= [1, 2, 3, 4 y 5] atm. Se observa que la conversión del etano y selectividad del etileno ( $XC_2H_6$  y  $RC_2H_4$ ) aumentan conforme aumenta la TSA (°C) y disminuyen conforme incrementa el valor de la presión.



*Figura 30*. Grafico a) conversión del etano (XC2H6), para distintos valores de TSA °C. En el b) se presenta el rendimiento del etileno para distintos valores de TSA °C. Ambos gráficos para distintas presiones en el sistema de reacción, P=[1, 2, 3, 4 y 5] atm

De acuerdo al análisis de sensibilidad 4, la TMAX varió de un rango de [400-500] °C y el valor de U se muestra en la siguiente Tabla 31.

Presión	TSA °C	U Kcal/h-m2-k
1 atm	400-470	165
	475-480	395
	485	600
	490-500	10
2 atm	400-470	165
	475-480	414
	485 - 490	600
	495-500	21
3 atm	400-470	165
	475-480	412
	485 - 490	600
	495-500	35
4 atm	400-470	165
	475-480	417
	485 - 490	600
	495	63
	500	54
5atm	400-470	165
	475-500	600

Tabla	31.	Resultado	de	análisis	de
sensibil	lidad 6	).			

Valores generados en Aspen Plus V8.8 del análisis de sensibilidad 6

#### Análisis de sensibilidad 5

En la Tabla 33 se presenta la síntesis del análisis de sensibilidad 5 realizado en el simulador Aspen plus v8.8, sobre el sistema de reacción ODH-Et sobre el catalizador MoVTeNbO/TiO₂; para diferentes mezclas de vapor con distinta composición en % mol, de acuerdo a la Tabla 32.

	Componente	Mezcla 1	Mezcla 2	Mezcla 3	Mezcla 4
	Etano C ₂ H ₆	1	9	18	40
Mezcla	Oxígeno O ₂	20.79	19.11	17.22	12.6
aire	Nitrógeno N ₂	78.21	71.89	64.78	47.4

Tabla 32. Diferentes composiciones de mezcla en la corriente de alimentación.

Tabla 33. Análisis de sensibilidad 5 realizado al sistema de reacción ODH-Et sobre al catalizador MoVTeNbO/TiO₂ en Asen plus V8.8; Para diferentes composiciones de mezcla en la corriente de alimentación.

Análisis de	VARY	DEFINE	TABULAR
sensibilidad			
	Temperatura de servicio auxiliar	U, TMAX, NRL0 y	TSA, U, $XC_2H_6$ ,
	TSA= [400-500]	NRL, para el C2H6 y	XO ₂ , TMAX, RC ₂ H ₄ ,
5	Con incrementos de 5°C	NRL, para el C2H4.	RCO, RCO ₂ , RH ₂ O.

Donde TSA=temperatura de servicio auxiliar (°C), U=coeficiente global de transferencia de calor (kcal/h- $m^2$ -k), TMAX=temperatura máxima alcanzada en el reactor químico (°C), NRL0 y NRL para el C₂H₆ = flujo molar a la entrada y a la salida del reactor del etano (kmol/h), NRL para el C₂H₄= flujo molar a la salida del reactor del etano (kmol/h), NRL para el C₂H₄= flujo molar a la salida del reactor del etano (kmol/h), XC₂H₆=conversión del etano, XO₂=conversión del oxígeno, RC₂H₄= rendimiento del etileno, RCO=rendimiento del monóxido de carbono, RCO₂=rendimiento del dióxido de carbono, RH₂O= rendimiento del agua; [XC₂H₆, XO₂, RC₂H₄, RCO, RCO₂, RH₂O]=datos obtenidos a la salida del reactor.

En la Figura 31 se presentan los resultados generados en el simulador Aspen Plus del análisis de sensibilidad 5, se presentan tres gráficos a) la temperatura del servicio auxiliar TSA (°C) vs la temperatura máxima alcanzada en el reactor TMAX (°C), b) la temperatura del servicio auxiliar TSA (°C) vs la conversión del etano a la salida del reactor  $XC_2H_6$  y c) la temperatura de servicio auxiliar TSA (°C) vs el rendimiento del etileno a la salida del reactor  $RC_2H_4$ ; todos estos gráficos fueron realizados para cuatro tipos de mezclas distintos de acuerdo a la relación molar en la composición de los componentes (% mol), presentados en la Tabla 32.

Para el gráfico a), la Mezcla 3 y Mezcla 4 se observa un incremento alto en la TMAX > 1000 °C en el reactor, para una TSA= 485°C y TSA = 475°C respectivamente. No es conveniente trabajar con esas Mezclas por arriba de los valores dados de la TSA, ya que el catalizador sufre descomposición a temperaturas por arriba de los 500 °C. Por otro lado, para la Mezcla 1 y Mezcla 2, la TMAX se mantiene regularmente sin tantos cambios para los distintos valores de TSA. Para el gráfico b) y c) se observa que la conversión del etano y rendimiento del etileno en el sistema de reacción mejora de acuerdo a lo siguiente Mezcla 1> Mezcla 2 > Mezcla 3 > Mezcla 4.

De acuerdo a estos gráficos para el sistema de reacción se recomienda la composición en % mol de la Mezcla 1 ya que es la que más altos valores de  $XC_2H_6$  y  $RC_2H_4$  arroja para diferentes valores de TSA.





c)

*Figura 31*. Grafico a) TMAX °C en el reactor para distintos valores de TSA °C, para el b) conversión del etano para diferentes valores de TSA °C y c) rendimiento del etileno para distintos valores de TSA °C. Se emplearon cuatro tipos de mezclas distintos de acuerdo a la relación molar en la composición de los componentes (% mol), en la corriente de alimentación ALM. 1/20.79/78.21, 9/19.11/71.89, 18/17.22/64.78 y 40/12.6/47.4 para la Mezcla 1, Mezcla 2, Mezcla 3 y Mezcla 4 respectivamente.

En la Tabla 34 se presenta la TSA, U, TMAX,  $XC_2H_6$  y  $RC_2H_4$  generados para cada Mezcla (% mol de los componentes del sistema de reacción).

Mezcla	TSA °C	U Kcal/h-m2-k	TMAX °C	X C ₂ H ₆	$R C_2 H_4$
Mezcla 1	400 - 490	165	400 - 496	0.29-0.96	0.28-0.80
-	495-500	600	498-504	0.98-0.99	0.77-0.78
Mezcla 2	400-465	165	402 - 494	0.10-0.50	0.1-0.44
	470	223.262606	496	0.5	0.46
	475 - 480	495.343904	489 - 497	0.52-0.57	0.46-0.50
	485 - 500	600	502-539	0.6-0.72	0.52-0.60
Mezcla 3	400 - 455	165	403 - 497	0.07-0.33	0.07-0.3
	460 - 500	600	470 - 1614	0.29-0.5	0.21-0.27
Mezcla 4	400 -445	165	404- 480	0.04- 0.17	0.04-0.16
	450 - 460	365	466 - 489	0.16-0.2	0.15-0.18
	465	451	495	0.21	0.193
-	470 - 500	600	497 - 1056	0.21-0.23	0.12-0.2

Tabla 34. Resultados del análisis de sensibilidad 5

Valores generados en Aspen Plus V8.8 del análisis de sensibilidad 5

De los datos presentados en la Tabla 34, los valores arrojados para la Mezcla 1 son los más convenientes para el sistema de reacción ODH-E, ya que se generan más altos valores de  $XC_2H_6$  y  $RC_2H_4$  comparadas con las otras Mezclas, además de que la TMAX no supera los 500 °C.

#### Análisis de sensibilidad 6:

En la Tabla 35 se presenta la síntesis del análisis de sensibilidad 6 realizado en el simulador Aspen plus v8.8, del sistema de ODH-Et sobre el catalizador MoVTeNbO/TiO₂

Tabla 35. Análisis de sensibilidad 6 realizado al sistema de reacción ODH-Et sobre al catalizador MoVTeNbO/TiO₂ en Asen plus V8.8.

Análisis de	VARY	DEFINE	TABULAR
sensibilidad			
	Para distintos caudales totales en	NRL0 y NRL para el	Longitud del reactor,
6	la corriente ALM. Longitud del	C ₂ H ₆ y O ₂ , NRL para el	X _{C2H6} , X _{O2} , R _{C2H4} ,
	reactor, en un rango de (0 a 2.5	$C_2H_4,CO,CO_2\;y\;H_2O$	$R_{\rm CO},R_{\rm CO2}yR_{\rm H2O}$
	m) con incrementos de 0.5m		

Donde TSA=temperatura de servicio auxiliar (°C), U=coeficiente global de transferencia de calor (kcal/h- $m^2$ -k), TMAX=temperatura máxima alcanzada en el reactor químico (°C), NRL0 y NRL para el C₂H₆ = flujo molar a la entrada y a la salida del reactor del etano, O₂NRL0 y O₂NRL= flujo molar a la entrada y a la salida del reactor del etano, O₂NRL0 y O₂NRL= flujo molar a la entrada y a la salida del reactor del etano, C₂NRL= flujo molar a la entrada y a la salida del reactor del etano, CO₂NRL= flujo molar a la salida del reactor del oxígeno, C₂H₄NRL= flujo molar a la salida del reactor del etalon, CO₂NRL= flujo molar a la salida del reactor de dióxido de carbono, H₂ONRL=flujo molar a la salida del reactor de agua, [flujo molar (kmol/h)], TSA= temperatura de servicio auxiliar (°C), XC₂H₆=conversión del etano, XO₂=conversión del oxígeno, RC₂H₄= rendimiento del etileno, RCO=rendimiento del monóxido de carbono, RCO₂, RH₂O]=datos obtenidos a la salida del reactor.

En el análisis 6 se varió en la simulación base de Aspen plus V8.8 el caudal total a la entrada en la corriente de ALM en un rango de (1 a 10 m³/h) a una temperatura de servicio auxiliar de 450°C (Tabla 28). Estas pruebas se realizaron empleando una relación molar inicial de C₂H₆/O₂/N₂ = 1/20.29/78.21 (mezcla 1, Tabla 32) y un coeficiente global de tranferencia de calor de U= 165 kcal / h m² k (Tabla 34). Se varió (en Vary) la longitud del reactor (m) y se definió (en define) el perfil de temperatura TRX del sistema de reacción.

En la Figura 32 se presentan los resultados generados en Aspen Plus del análisis de sensibilidad 8.



*Figura 32.* Grafico a) perfiles de temperatura TRX °C a lo largo del recator, para los siguientes caudales totales en la corriente ALM. F= 2 m²/h, 4 m²/h, 6 m²/h, 8 m²/h y 10 m²/h, b) tiempo de residencia (seg) de los componentes del sistema de reacción, para distintos caudales toales en la corriente de ALM.

En la Figura 32 se observa para el gráfico a) los perfiles de temperatura TRX °C a lo largo del reactor para distintos caudales totales en la corriente de alimentación ALM; se observa que entre más pequeño es el caudal total, en el perfil de temeraturas se alcanza más rapido la temperatura 450 °C, para luego disminuir ligeramente. En el gráfico b) se observa que el tiempo de residencia disminuye conforme aumenta el caudal total a la entrada en la corriente de alimentación ALM; esto es debido a que entran mayor cantidad de reactivos al reactor, por lo que reaccionan con una mayor rapidez, permaneciendo un menor tiempo dentro del reactor.

En la Tabla 36 se muestra los flujos molares kmol/h en la corriente de entrada IN- RX y a la salida OUT-RX del reactor RX-K0 de los componente del sistema de reacción, así también se muetsra la temperatura, presión, fracción vapor y fracción líquido a la entrada y salida del reactor.

Mole Flow kmol/hr 2 m3/h		4 m2/h		6 m2/h		8 m2/h		10 m2/h		
Componente	IN-RX	OUT-RX	IN-RX	OUT-RX	IN-RX	OUT-RX	IN-RX	OUT-RX	IN-RX	OUT-RX
N2	0.0641843	0.0641843	0.1283686	0.1283686	0.1925529	0.1925529	0.2567372	0.2567372	0.3209216	0.3209216
CO	0	9.88E-05	0	0.00013287	0	0.000154542	0	0.00016877	0	0.00017761
02	0.0170616	0.0165618	0.0341233	0.0333409	0.0511849	0.0502061	0.0682466	0.0671244	0.0853082	0.0840814
C2H4	0	0.00064854	0	0.00108367	0	0.00139373	0	0.00162591	0	0.00180103
C2H6	0.00082067	0.00010785	0.00164133	0.00046997	0.002462	0.000965631	0.00328267	0.0015443	0.00410333	0.00218371
CO2	0	2.97E-05	0	4.25E-05	0	5.07E-05	0	5.62E-05	0	5.96E-05
H2O	0	0.00084136	0	0.00134674	0	0.00170164	0	0.00196329	0	0.00215681
Temperature C	200	450.3344	200	450.6552	200	450.971	200	451.2933	200	451.6312
Pressure bar	1.003118	1.01325	1.003118	1.01325	1.003118	1.01325	1.003118	1.01325	1.003118	1.01325
Vapor Frac	1	1	1	1	1	1	1	1	1	1
Liquid Frac	0	0	0	0	0	0	0	0	0	0

Tabla 36. Resultados del análisis de sensibilidad 8.

Valores generados en Aspen Plus V8.8 del análisis de sensibilidad 8

De acuerdo a la Tabla 28 anterior, se observa que a mayor caudal total en la corriente de alimentación ALM, mayor es el flujo molar de etileno a la salida y menor el flujo molar de etano. Por lo que es conviente trabajar con caudales grandes. El gráfico también nos muestra que todo lo que entra y sale del reactor se encuentra en fase gas, ya que la fraccion de vapor es igual a uno.

#### Discusión

De acuerdo a los análisis de sensibilidad realizados para el análisis paramétrico del sistema de reacción, se presentan las siguientes discusiones:

- El modelo de simulación generado en Aspen Plus V8.8 es representativo del sistema de reacción ODH-Et sobre el catalizador MoVTeNbO/TiO₂ de acuerdo a lo reportado en la literatura por Che-Galicia et al. (2015). Debido a que los datos resportados por este fueron reproducidos en el simulador.
- El valor de la TSA es una variable critica a conciderar en el sistema de reacción ODH-Et ya que de esta depende la TMAX en el reactor, las conversiones del C₂H₆ y rendimiento del C₂H₄.
- Para valores mayores de TSA= 480 °C la conversión del C₂H₆ y rendimiento del C₂H₄ disminuyen debido al valor generado de U generado por Aspen Plus V8.8 por la especificación de diseño 2) para que el valor del coeficiente de transferencia de calor no sobre pase una T= 500 °C.
- El perfil de temperaturaa lo largo del reactor varía de acuerdo a la TSA utilizada.

- Es conveniente trabajar a P=1 atm debido a que se obtienen altas conversiones de etano  $XC_2H_6$  y altos rendimientos del etileno  $RC_2H_4$ .
- Los resultados mostrados para la mezcla 1,  $C_2H_6/O_2/N_2 = 1/20.79/78.21$  (% mol), es recomendable dado que da una alta conversión de etano  $XC_2H_6$  y alto rendimiento de  $C_2H_4$ , para diferentes temperaturas de servicio auxiliar TSA (°C) y temperaturas máximas en el reactor TMAX< 500 °C.
- Caudales grandes generan grandes cantidades de C₂H₄ y tiempos de residencia bajos.

## 3.4 CORRELACIONES DEL SISTEMA DE REACCIÓN ODH-ET

A partir de los análisis de sensibilidad, se evaluó el comportamiento del sistema de reacción ante variaciones en las condiciones de operación. En la Figura 33 se presentan los resultados de uno de los casos evaluados, en donde se observa el comportamiento de la temperatura de reacción ante la variación de la temperatura del servicio auxiliar, en donde para cada condición se muestra la conversión lograda. A partir de estos datos mostrados en la Figura 33, se obtiene la correlación mostrada en la ecuación (Ec. 3.6).



*Figura 33*. Comportamiento térmico ante la variación en la temperatura del servicio auxiliar ( $T_{SA}$ ).

 $T_{RX} = 6.74 + 0.9977 \text{si} (2.34 \cdot \text{n} \cdot \text{x} \cdot \text{T}_{SE}) - 3.978 \text{e}^{(5.796 \cdot \text{s})^2}$ 

En donde, x es la fracción conversión del etano,  $T_{RX}$ , temperatura del reactor y  $T_{SA}$ , temperatura del servicio auxiliar.

Ec. 3. 6

En la figura 34 se muestra un gráfico de superficie que representa la dependencia de la temperatura máxima del reactor con la conversión y la temperatura del servicio auxiliar. Cabe mencionar que si bien se pueden obtener conversiones altas en función de TSA, esto no implica una mayor producción de etileno, ya que la selectividad cambia en relación a la temperatura del proceso, así mismo altas conversiones promueven altas temperaturas por lo que las propiedades del servicio auxiliar deberán ajustarse ante esta dinámica para evitar la presencia de puntos calientes por  $T_{RX} \ge 500$  °C.



Figura 34. . T_{MAX}_T_{SA}_Conversión

En la Figura 34 se muestra la fracción-conversión del etano a lo largo del reactor a diferentes U, cuando la temperatura del servicio auxiliar es igual a 450 °C; se observa que al aumentar U el avance de reacción disminuye, esto implica que si las características del servicio auxiliar se ajustan ante la dinámica del sistema de reacción podemos evitar la presencia de zonas con una  $T_{RX} \ge 500$  °C.

En la figura 35 se muestran los resultados del análisis de sensibilidad en donde se evalúa la fracción mol del etileno para distintos valores de U [kcal/h-m²-k] y selectividad de la producción de etileno respecto a la variable a manipular TSA manteniendo U constante, en la cual se observa un punto de inflexión caracterizado por la condición óptima respecto a TSA.



*Figura 35.* A) Efecto el  $U_D$  en el consumo de etileno a lo largo del reactor y b) Efecto la temperatura del reactor en la selectividad Etileno/CO₂

#### Discusión

Una correlación importante es la TSA y U respecto a los perfiles de temperatura dentro del reactor, ya que de estas depende el perfil de temperatura a lo largo del reactor Trx, la cual es importante que no sobrepase los 500°C para que no exista una descomposición por parte del catalizador MoVTeNbO/TiO₂. De igual manera el consumo de etileno de acuerdo al valor de U se observó no varía de forma considerable para los distintos valores de U pero si a lo largo del reactor, por lo que sería bueno considerar un tiempo de residencia corto para el sistema de reacción para que no exista consumo de etileno por parte de las reacciones paralelas a la de la producción de etileno. También se observa que la TSA tiene gran influencia en la selectividad a lo largo del reactor, ya que a mayor temperatura de TSA menor es la selectividad, el cual es un parámetro importante a considerar para el diseño adecuado del proceso ODH-Et.

### 3.5 PROCESO DE SEPARACIÓN

Esta tercera etapa de resultados, presenta el modelo de simulación del proceso de separación para la obtención del etileno.

#### Proceso de separación en Aspen plus V8.8

En la Figura 36 se muestra el diagrama de proceso de separación del etileno planteado en el simulador Aspen plus V8.8, de acuerdo a lo descrito en metodología.



Figura 36. Diagrama del proceso de separación para la recuperación de C₂H₄ en Aspen plus v8.8

El proceso de separación del etileno realizado en Aspen plus V8.8 se muestra en la Figura 36, la corriente a la salida del reactor PRO, ingresa a un compresor para establecer la P=1atm debido a la caída de presión generada en el reactor durante la reacción. La corriente S4 sale a una T= 451.6°C y P=1 atm, y entra a un intercambiador de calor H2, el cual disminuye la temperatura y la corriente S5 a la salida de éste, sale a una T=5°C y P=1 atm. La corriente S5 entra a un tanque flash SEP1, del cual, en el fondo sale la corriente LIQUIDO a una T=12.6 °C y P=1 atm, de la cual sale únicamente H₂O, mientras que en el domo sale la corriente VAPOR a una T=12.6 °C y P=1 atm, de la cual sale una mezcla de componentes [N₂, CO, O₂, C₂H₄, C₂H₆, CO₂]. La corriente de VAPOR entra al compresor C3, para un incremento en la presión P= 9 atm, por lo que la corriente S5 sale a una P = 9 atm y T= 355.4°C; la cual entra a un intercambiador de calor H3, en donde la temperatura disminuye a una T=-152.5 °C para la corriente S6, la cual entra al tanque flash SEP2, donde en el domo, en la corriente VAP sale una mezcla principalmente de [N₂, CO y O2], mientras que en la corriente del fondo LIQ se obtiene la mezcla de [C₂H₄, C₂H₆ y CO₂] principalmente; la corriente LIQ entra a una columna de destilación B3, mediante la cual se separa en el destilado D,  $C_2H_4$  y en el fondo F, se obtiene  $C_2H_6$  y otros componentes.

De acuerdo a lo generado en Aspen plus V8.8, en la Tabla 37, se presentan los porcentajes con respecto al flujo molar (kg/h), de los componentes recuperados para las distintas corrientes de salida del tren de separación.

% FLUJO	SEI 1		SEP 2		B3	
MOLAR Kg/n	LIQUIDO	VAPOR	LIQ	VAP	D	RE
N2	100%	0%	98.7%	1.23%	99.9%	Trazas
СО	100%	0%	99 %	< 2 %	99.9%	Trazas
02	100%	0%	97.6%	2.26%	99.9%	Trazas
С2Н4	100%	0%	9.8%	88.2%	100%	0%
С2Н6	100%	0%	3%	96.6%	< 1.5 %	99.9 %
CO2	100%	0%	<33%	99%	0%	100%
H2O	6%	94%	trazas	100%	0%	100%

Tabla 37. Porcentajes (flujo molar, kg/h) en las corriente del proceso de separación en Aspen plus v8.8

Es importante recordar que del tren de separación, el componente principal a recuperar, es el etileno  $C_2H_4$  y como se muestra en la Tabla x, en el primer tanque de separación flash SEP1, en la corriente de vapor se recupera el 94 % de H₂O total producida a la salida del reactor, mientras en la corriente LIQUIDO se recuperan el 100% de los demás componentes obtenidos a la salida del reactor [N₂, CO, O₂, C₂H₄, C₂H₆, y CO₂] más un 6% de H₂O; en el segundo tanque flash SEP2, en la corriente LIQ se va la mayor cantidad de N₂, CO y O₂, del obtenido de la corriente LIQUIDO, mientras que en la corriente VAP se recupera la mayor cantidad de C₂H₄, C₂H₆, CO₂ y H₂O; de la corriente VAP que entra a la torre de destilación, en la corriente D se recupera el C₂H₄ con restos de N₂, CO y O₂; mientras que en la corriente RE se recupera el C₂H₆, con restos de CO₂ y H₂O.

En la Tabla 38 se muestran las condiciones de operación a las que se trabajaron cada separador, en el simulador Aspen plus V8.8.

Separador	Temperatura (°C)	Presión (atm)
SE1	-20	1
SE2	-157	9
CD3	-157	9

Tabla 38. Condiciones de operación del tren de separación para la ODH-ET

#### Discusión

Cabe mencionar que debido al exceso de  $N_2$  introducido como materia prima, también a la salida del reactor hay gran cantidad de este, y de acuerdo a los valores obtenidos en la corriente D, en donde se recupera la mayor cantidad de  $C_2H_4$ , el  $N_2$  presente en esta corriente es considerable y lo mismo sucede con el  $O_2$ ; por lo que en futuros trabajos es importante mejorar esta separación de componente mediante columnas de destilación con resolución de métodos largos.



- MIX = Mezclador C1 = Compresor # 1 H1 = Intercambiador de calor # 1 RX-K0 = Reactor pfr B1 = Divisor C2 = Compresor #2 H2 = Intercambiador de calor # 2 SEP1 = Tanque flash # 1
- C3 = Compresor # 3

H3 = Intercambiador de calor # 3 SEP2 = Tanque Flash # 2 CD = Columna de destilación

*Figura 37*. Diagrama del sistema de reacción y separación para la obtención del C2H4 mediante la deshidrogenación oxidativa del etano sobre el catalizador MoVTeNbO/TiO2

# CAPITULO 4 CONCLUSIONES

En este apartado se presenta la conclusión de este trabajo de tesis, de acuerdo a lo realizado en la metodología desarrollada para este trabajo de tesis. También se presenta la bibliografía consultada en el presente trabajo.

## 4.1 CONCLUSIÓN

Se concretó el diseño conceptual del sistema de reacción ODH-Et sobre el catalizador MoVTeNbO/TiO₂ mediante el desarrollo de la topología del proceso a partir de la caracterización del sistema de reacción propuesto en la literatura por Che-Galicia et al., (2015).

Se caracterizó el sistema de reacción ODH-Et sobre el catalizador MoVTeNbO/TiO2, a partir de las propiedades fisicoquímicas de los compuestos del sistema de reacción, propiedades del catalizador, heurísticas de diseño y restricciones de operación del caso de estudio.

Se determinaron las condiciones de operación que maximicen el rendimiento del proceso, es decir, que generen un alto un rendimiento de C₂H₄ y alta conversión de C₂H₆ en el sistema de reacción [(1/20.79/78.21) = (C₂H₄/O/N₂) % mol], caudal a la entrada= 10 m³/h, TSA= 450 °C, P=1 atm y U= 165 kcal/h-m²-k], determinados a partir del análisis paramétrico realizado en Aspen plus v8.8 del sistema de reacción ODH-Et sobre el catalizador MoVTeNbO/TiO₂.

Se determinó la correlación entre las variables de operación más importantes del sistema de reacción mediante el análisis de gráficos generados a partir de los análisis paramétricos realizados al sistema de reacción ODH-Et sobre el catalizador MoVTeNbO/TiO₂.

Con lo mencionado anteriormente se desarrolló un modelo de simulación para la caracterización del sistema de reacción de la deshidrogenación oxidativa de etano empleando como catalizador MoVTeNbO/TiO₂, validado en el simulador Aspen plus v8.8 a partir de la reproducción de datos experimentales reportados en la literatura por Che- Galicia et al., (2015).

### 4.2 BIBLIOGRAFÍA

- Amakawa, K., Kolen'ko, Y. V., Schlçgl, R., & Trunschke, A. (2014). The M1 Phase of MoVTeNbO as a Catalyst for Olefin Metathesis and Isomerization. *ChemCatChem*, 3338-3341.
- Ashour, F. H., & Gadalla, M. A. (2017). Ethylene production economics from optional feedstocks. *Centro Nacional de Investigaciones*, 9-13.
- Baroi, C., Gaffney, A. M., & Fushimi, R. (2017). Process economics and safety considerations for the oxidative dehydrogenation of ethane using the M1 catalyst. *ELSEVIER*, 1-7.
- Che-Galicia, G., Martínez, R. S., López, I. F., & Araiza, C. O. (2015). Modeling of Oxidative Dehydrogenation of ethane to ethylene on a MoVTeNbO/TiO2 catalyst in a industrial -scale packed bed catalytic reactor. *Chemical Engineering Journal*, 682- 694.
- Che-Galicia, G., Martínez, R. S., López-Isunza, F., & Araiza, C. O. (2015). Modeling of Oxidative Dehydrogenation of ethane to ethylene on a MoVTeNbO/TiO2 catalyst in a industrial -scale packed bed catalytic reactor. *Chemical Engineering Journal*, 682-694.
- Che-Galicia, G., Quintana-Solórzano, R., Martínez, R. S., Valente, J. S., & Castillo-Araiza, C. O. (2014). Kinetic modeling of the oxidative dehydrogenation of ethane to ethylene over a MoVTeNbO catalytic system. *Chemical Engineering Journal*, 75-88.
- Clarson, E. C. (1996). Don't Gamble with physical properties for simulations. *CHEMICAL ENGINEERING PROGRESS*, 35-46.
- Fogler, H. S. (2008). *Elementos de Ingeniería de las reacciónes químicas* (Vol. Cuarta Edición). México: PEARSON Educación.
- Gartner, C. A., Veen, A. C., & Lercher, J. A. (2013). Oxidative Dehydrogenation of Ethane: Common Principles and Mechanistic Aspects. *ChemCatChem*, 3196 - 3217.
- Gary, J., & Handwerk, G. E. (2003). *Refino de Petroleo Tecnología y Economía*. Barcelona: Reverté, S.A.
- Gerzeliev, I. M., Popov, A. Y., & Ostroumova, V. A. (2016). Oxidative Dehydrogenation of Ethane to Ethylene in a System with Circulating Microspherical Metal Oxide Carrier:
  2. Ethylene Production in a Pilot Unit with a Riser Reactor . *Petroleum Chemestry*, 724-729.
- Haribal, V. P., Neal, L. M., & Li, F. (2016). Oxidative dehydrogenation of ethane under a cyclic redox schemee Process simulations and analysis. *ELSEVIER*, 1024-1035.
- Hermülheim, D. L. (1987). *MÉTODOS DE LA INDUSTRIA QUÍMICA en esquemas de flujo* en colores . Barcelona: REVERTÉ, S.A. .
- INFRA. (2011, Julio). *Hoja de Datos de Seguridad- Infra*. Retrieved from http://www.infra.com.mx/wp-content/uploads/2013/09/nitrogeno_comprimido.pdf
- INSHT. (2005). Fichas Internacionales de Seguridad Química. Retrieved from https://www.insst.es/InshtWeb/Contenidos/Documentacion/FichasTecnicas/FISQ/Fi cheros/401a500/nspn0475.pdf
- INSHT. (2006, Abril). *Fichas Internacionales de Seguridad Química*. Retrieved from https://www.insst.es/InshtWeb/Contenidos/Documentacion/FichasTecnicas/FISQ/Fi cheros/201a300/nspn0266.pdf
- INSHT. (2007, Abril). *Fichas Internacioanles de Seguridad Química*. Retrieved from https://www.insst.es/InshtWeb/Contenidos/Documentacion/FichasTecnicas/FISQ/Fi cheros/0a100/nspn0023.pdf
- INTRATEC. (2017). Ethylene Production from Vacuum Gas Oil Cost Analysis Report ID: Ethylene E01C. Obtenido de https://books.google.com.mx/books?id=FN4zDwAAQBAJ&printsec=frontcover&d q=ethylene&hl=es&sa=X&ved=0ahUKEwjrqKOqjufbAhVBS60KHQd_DggQ6AE IKDAA#v=onepage&q=ethylene&f=false
- Ishchenko, E. V., Ishchenko, A. V., Bondareva, V. M., Kardash, T. Y., Sobolev, V. I., & Andrushkevich, T. V. (2014). Structural Features of Promoted MoVTeNbO Catalysts for the Oxidative Dehydrogenation of Ethane. *Pleidades Plublishing*, 788-795.
- Khadzhiev, S. N., Usachev, N. Y., Gerzeliev, I. M., Belanova, E. P., Kalinin, V. P., Kasakov, V. V., . . . Popov, Y. (2015). Oxidative Dehydrogenation of Ethane to Ethylene in a System with Circulating Microespherical Metal Oxide Carrier: 1. Synthesis and Study of the Catalytic System. *Petroleum Chemestry*, 651-654.
- Kumar, A. S., Kalevaru, V., Qiao, A., Alshammari, A., Lingaiah, N., Ch. Sailu, P. S., & Martin, A. (2013). Catalytic Behavior of Composed Molybdophosphoric Acid Supported on Alumina for Oxidative Drehydrogenation of Ethane to Ethylene. *Kinetics and Catalysis*, 615-619.
- Lechuga, F. T. (2008). ABC Para Comprender Reactores Químicos con Multireacción. Celaya, Gto. : REVERTÉ.
- Lobera, M. P., Escolástico, S., & Serra, J. M. (2011). High Ethylene Production through Oxidative Dehydrogenation oh Ethane Membrane Reactors Based on Fast OxygenlonConductors. *ChemCatChem*, 1503-1508.

- Lynch, S., Eckert, C., Yu, J., Gill, R., & Maness, P.-C. (2016). Overcoming substrate limitations for improved production of ethylene in E. coli. *Lynch et al. Biotechnol Biofuels*, 1-10.
- Markit, I. (2016, Noviembre). IHS Markit. Retrieved from https://ihsmarkit.com/index.html
- Melzer, D., Xu, P., Hartmann, D., Zhu, Y., Browning, N. D., Sanchez-Sanchez, M., & Lercher, J. A. (2016). Atomic-Scale Determination of ActiveFacets on the MoVTeNb Oxide M1 Phase and Their Intrinsic Catalytic Activity for Ethane Oxidative Dehydrogenation. *GDCh*, 8873 - 8877.
- Mexicanos, P. (2006, Julio 14). *Etileno Pemex Petroquímica*. Retrieved from http://www.ptq.pemex.com.mx/productosyservicios/eventosdescargas/Documents/ Hojas%20de%20Seguridad/Hojas%20de%20Seguridad/Etileno.pdf
- Mishanin, I. I., Kalenchuk, A. N., Maslakov, K. I., Lunin, V. V., Koklin, A. E., Finashina, E. D., & Bogdan, V. I. (2017). Oxidative Dehydrogenation of Ethane over a Mo-V-Nb-Te-O Mexed- Oxide Catalyst in a Cyclic Mode. *Kinetics and Catalysis*, 156-160.
- OXIACED. (11, Junio 07). *Ficha de Datos de Seguridad Oxígeno*. Retrieved from http://www.ebd.csic.es/lie/PDF/FDS%20O2%20(9).pdf
- PEMEX. (21 de 04 de 2019). *Petroleos Mexicanos, Estadisticas petroleras*. Obtenido de http://www.pemex.com/ri/Publicaciones/Indicadores%20Petroleros/epetroquimicos _esp.pdf
- Perry, R. H., Green, D. W., & Maloney, J. O. (2003). *Manual del Ingeniero Químico*. España: Mc Graw Hill.
- Petroleo, I. M. (2015, Enero 27). *gob.mx*. Retrieved from https://www.gob.mx/imp/articulos/se-desarrolla-tecnologia-catalitica-de-punta-para-producir-etileno
- ROTH. (2018, Mayo 24). *Fichas de Datos de Seguridad: Agua*. Retrieved from https://www.carlroth.com/downloads/sdb/es/3/SDB_3175_ES_ES.pdf
- Sánchez, V. J., López, N. J., Armendariz, H. H., Massó, R. A., Ivars, B. F., & Gúzman, C. M. (2014, Abril 24).
- Seider, W. D., Seader, J. D., & Lewin, D. R. (2003). Product and Process Desing Principles. WILEY.
- SENER, S. d. (21 de 04 de 2019). *El futuro energético de México*. Obtenido de Prontuario estadístico marzo 2018: https://www.gob.mx/cms/uploads/attachment/file/311761/531.DGGNP.013.18.TV A.4.PP.05_Prontuario_de_gas_natural_Reporte_marzo_2018.pdf

- Sistema de Información Energética. (13 de Agosto de 2018). Obtenido de Sistema de Información Energética: http://sie.energia.gob.mx/bdiController.do?action=cuadro&cvecua=PMXD2C01
- Spiel, L. (2004). *INGENIERÍA DE LAS REACCIÓNES QUÍMICAS* (Vol. Tercera Edición). Mexico: LIMUSA WILEY.
- Turton, R., Bailie, R. C., Whiting, W. B., Shaeiwitz, J. A., & Bhattacharyya, D. (2012). ANALYSIS, SYNTHESIS, AND DESIGN OF CHEMICAL PROCESSES. Michigan: PRENTICE HALL.
- Valderrama, J. O. (2001). Información Tecnológica (Vol. 12).
- Valente, J. S., rzano, R. Q.-S., Armendáriz-Herrera, H., n-Rodríguez, G. B., & pez-Nieto, J. M. (2013). Kinetic Study of Oxidative Dehydrogenation of Ethane over MoVTeNb Mixed-Oxide Catalyst. *I&EC research*, 1775-1786.

Wade, L. (2012). Química Orgánica. Mexico: Pearson.

Zimmermann, H., & Walzi, R. (2012). *Ethylene, Encyclopedia of Industrial Chemestry*. Retrieved from https://www.ugr.es/~tep028/pqi/descargas/Industria%20quimica%20organica/tema_ 2/documentos_adicionales/etileno_a10_045.pdf APÉNDICE I: Propiedades fisicoquímicas de los componentes que participan en el sistema de reacción ODH-Et sobre el catalizador MoVTeNbO/TiO₂

COMPUESTO QUÍMICO	PESO MOLECULAR	ESTADO FÍSICO, ASPECTO	PUNTO DE EBULLUCIÓN	PUNTO DE FUSIÓN	SOLUBILIDAD EN AGUA	
ETANO C₂H₅	30.1 g/mol	Gas licuado comprimido, incoloro e inodoro.	-89.1 °C	-183 °C	ml/100 ml a 20°C muy pobre	
ETILENO C2H4	28.5 g/mol	Gas comprimido, incoloro, con olor característico.	-104 °C	-169.2 °C	N/A	
MONÓXIDO DE CARBONO CO	28 g/mol	Gas comprimido, incoloro, inodoro e insípido.	-191 °C	-205 °C	Solubilidad en agua ml/100 ml a 20°C = 2.3	
DIÓXIDO DE CARBONO CO₂	44 g/mol	Gas licuado comprimido, incoloro e inodoro.	-56.6 °C	-78.5 °C	Solubilidad en agua ml/100 ml a 20°C = 88	
OXÍGENO O₂	31.998 g/mol	Gas incoloro e inodoro.	-183 °C	-218 °C	4.889 cm³/100cm³ agua 1atm 0°C	
NITRÓGENO N₂	28 g/mol	Gas incoloro e inodoro.	-185.9 °C	-210 °C	1.485 cm³/100 cm³ Agua	
AGUA H₂O	18.02 g/mol	Líquido, incoloro e inodoro.	100 °C	0 °C	NA	

COMPUESTO	DENSIDAD	PUNTO DE	TEMPERATURA	LÍMITES DE	FUENTE
QUÍMICO2	RELATIVA DE	INFLAMACIÓN	DE	EXPLOSIVIDAD, % EN	
	VAPOR (AIRE=1)		AUTOIGNICIÓN	VOLUMEN EN EL AIRE	
ETANO	1.05	(-135) °C	472 °C	3 - 12.5 %	(INSHT, 2006)
ETILENO	0.98	(-136.1) °C	490 °C	2.7 - 36 %	(INSHT, Fichas
					Internacionales de
					Seguridad Química, 2005)
MONÓXIDO DE	0.97	Gas inflamable	605 °C	12.5 - 74.2 %	Fichas Internacionales de
CARBONO					Seguridad Química
					IPCS, CE 2007
DIÓXIDO DE	1.5	N/A	N/A	N/A	(INSHT, Fichas
CARBONO					Internacioanles de
					Seguridad Química, 2007)
OXÍGENO	1.3	N/A	N/A	N/A	(OXIACED, 11)
NITRÓGENO	0.97	N/A	N/A	N/A	(INFRA, 2011)
AGUA	1g/cm³ a 20°C	NA	N/A	N/A	(ROTH, 2018)



## APÉNDICE II: Elección del modelo termodinámico

Fuente: (Clarson, 1996)

Análisis de	VARY	DEFINE	TABULAR			
sensibilidad						
1	Temperatura de servicio	U, TMAX, NRL0 y	TSA, U, XC2H6,			
Validación	auxiliar TSA= [400-500]	NRL, para el C2H6 y	XO2, TMAX,			
del modelo	Con incrementos de 5°C	NRL, para el C2H4.	RC2H4, RCO,			
			RCO2, RH2O.			
2	Temperatura de servicio	U, TMAX, NRL0 y	TSA, U, XC2H6,			
Validación	auxiliar TSA= [400-500]	NRL, para el C2H6 y	XO2, TMAX,			
del modelo	Con incrementos de 5°C	NRL, para el C2H4.	RC2H4, RCO,			
			RCO2, RH2O.			
	Coeficiente global de	TMAX, NRL0 y NRL				
1	transferencia de calor	para el C ₂ H ₆	TMAX, X, U			
	U [10-600] Kcal /h-m ² -K					
	Temperatura de servicio	U, TMAX, NRL0 y				
	auxiliar TSA= [400-500]	NRL, para el C2H6,	TSA, U, XC2H6,			
2	Con incrementos de 5°C	O2NRL0, O2NRL,	XO2, TMAX,			
		C2H4NRL, CONRL,	RC2H4, RCO,			
		CO2NRL Y	RCO2, RH2O.			
		H2ONRL.				
	Temperatura de servicio	Perfil de temperaturas				
	auxiliar TSA= [440-485]	TRX, TMAX, NRL0	TSA, TRX, X,U			
3	Con incrementos de 5°C	y NRL para el C ₂ H ₆				
4	P=[ 1, 2, 3, 4 y 5] atm	U, TMAX, NRL0 y	TSA, U, XC2H6,			
	Temperatura de servicio	NRL, para el C2H6 y	XO2, TMAX,			
	auxiliar TSA= [400-500]	NRL, para el C2H4.	RC2H4, RCO,			
	Con incrementos de 5°C		RCO2, RH2O.			
5	Tabla 24. Diferentes mezclas	U, TMAX, NRL0 y	TSA, U, XC2H6,			
	de composición.	NRL, para el C2H6 y	XO2, TMAX,			
	Temperatura de servicio	NRL, para el C2H4.	RC2H4, RCO,			

## APÉNDICE III Análisis de sensibilidad realizados al sistema ODH-Et en aspen plus V8.8

	auxiliar TSA= [400-500]		RCO2, RH2O.
	Con incrementos de 5°C		
6	Para distintos caudales totales	NRL0 y NRL para el	Longitud del
	en la corriente ALM. Longitud	C ₂ H ₆ y O ₂ , NRL para	reactor, X _{C2H6} , X _{O2} ,
	del reactor, en un rango de (0 a	el C ₂ H ₄ , CO, CO ₂ y	$R_{\rm C2H4},R_{\rm CO},R_{\rm CO2}y$
	2.5 m) con incrementos de	$H_2O$	R _{H2O}
	0.5m		

## APÉNDICE IV. Corrientes del sistema de reacción ODH-Et

Heat and Material Balance Table																		
Stream ID		ALM	С	D	IN-RX	LIQ	LIQUIDO	OUT-RX	PRO	R	RE	S1	S2	S3 5	55 5	6	VAP	VAPOR
Temperature	С	24.0	24.0	-92.0	200.0	-152.5	12.6	451.6	451.6		-34.5	454.3	5.0	25.2	355.4	-152.5	-152.5	12.6
Pressure	bar	1.013	1.013	8.598	1.013	9.119	1.013	1.013	1.013		9.288	1.023	1.013	1.023	9.119	9.119	9.119	1.013
Vapor Frac		1.000	1.000	1.000	1.000	0.000	0.000	1.000	1.000		0.000	1.000	1.000	1.000	1.000	0.976	1.000	1.000
Mole Flow	kmol/hr	0.410	0.410	0.007	0.410	0.010	0.002	0.411	0.411	0.000	0.002	0.411	0.411	0.410	0.409	0.409	0.400	0.409
Mass Flow	kg/hr	11.843	11.843	0.218	11.843	0.285	0.037	11.843	11.843	0.000	0.068	11.843	11.843	11.843	11.806	11.806	11.520	11.806
Volume Flow	l/min	166.667	166.667	0.206	265.565	0.006	0.001	407.874	407.874	0.000	0.002	405.331	156.370	165.665	39.188	6.467	6.460	159.873
Enthalpy	Gcal/hr	> -0.001	> -0.001	< 0.001	< 0.001	> -0.001	> -0.001	0.001	0.001		> -0.001	0.001	> -0.001	> -0.001	0.001	-0.001	-0.001	> -0.001
Mass Flow	kg/hr																	
NITRO-01		8.990	8.990	0.111	8.990	0.111		8.990	8.990		trace	8.990	8.990	8.990	8.990	8.990	8.879	8.990
CARBO-01				< 0.001		< 0.001		0.005	0.005		trace	0.005	0.005		0.005	0.005	0.005	0.005
OXYGE-01		2.730	2.730	0.061	2.730	0.061		2.691	2.691		trace	2.691	2.691	2.730	2.691	2.691	2.629	2.691
ETHYL-01				0.045		0.045		0.051	0.051		< 0.001	0.051	0.051		0.051	0.051	0.005	0.051
ETHAN-01		0.123	0.123	< 0.001	0.123	0.064		0.066	0.066		0.064	0.066	0.066	0.123	0.066	0.066	0.002	0.066
CARBO-02						0.003		0.003	0.003		0.003	0.003	0.003		0.003	0.003	< 0.001	0.003
WATER						0.001	0.037	0.039	0.039		0.001	0.039	0.039		0.001	0.001	trace	0.001
SODIU-01																		
Mass Frac																		
NITRO-01		0.759	0.759	0.512	0.759	0.391		0.759	0.759		trace	0.759	0.759	0.759	0.761	0.761	0.771	0.761
CARBO-01				345 PPM		264 PPM		420 PPM	420 PPM		trace	420 PPM	420 PPM		421 PPM	421 PPM	425 PPM	421 PPM
OXYGE-01		0.230	0.230	0.281	0.230	0.214		0.227	0.227		trace	0.227	0.227	0.230	0.228	0.228	0.228	0.228
ETHYL-01				0.207		0.158		0.004	0.004		665 PPM	0.004	0.004		0.004	0.004	475 PPM	0.004
ETHAN-01		0.010	0.010	293 PPM	0.010	0.223		0.006	0.006		0.940	0.006	0.006	0.010	0.006	0.006	167 PPM	0.006
CARBO-02						0.009		221 PPM	221 PPM		0.038	221 PPM	221 PPM		222 PPM	222 PPM	5 PPM	222 PPM
WATER						0.005	1.000	0.003	0.003		0.021	0.003	0.003		122 PPM	122 PPM	trace	122 PPM
SODIU-01																		
Mole Flow	kmol/hr																	
NITRO-01		0.321	0.321	0.004	0.321	0.004		0.321	0.321		trace	0.321	0.321	0.321	0.321	0.321	0.317	0.321
CARBO-01				trace		trace		< 0.001	< 0.001		trace	< 0.001	< 0.001		< 0.001	< 0.001	< 0.001	< 0.001
OXYGE-01		0.085	0.085	0.002	0.085	0.002		0.084	0.084		trace	0.084	0.084	0.085	0.084	0.084	0.082	0.084
ETHYL-01				0.002		0.002		0.002	0.002		trace	0.002	0.002		0.002	0.002	< 0.001	0.002
ETHAN-01		0.004	0.004	trace	0.004	0.002		0.002	0.002		0.002	0.002	0.002	0.004	0.002	0.002	< 0.001	0.002
CARBO-02						< 0.001		< 0.001	< 0.001		< 0.001	< 0.001	< 0.001		< 0.001	< 0.001	trace	< 0.001
WATER						< 0.001	0.002	0.002	0.002		< 0.001	0.002	0.002		< 0.001	< 0.001	trace	< 0.001
SODIU-01																		
Mole Frac																		
NITRO-01		0.782	0.782	0.531	0.782	0.408		0.780	0.780		trace	0.780	0.780	0.782	0.784	0.784	0.793	0.784
CARBO-01				358 PPM		275 PPM		432 PPM	432 PPM		trace	432 PPM	432 PPM		434 PPM	434 PPM	438 PPM	434 PPM
OXYGE-01		0.208	0.208	0.255	0.208	0.196		0.204	0.204		trace	0.204	0.204	0.208	0.205	0.205	0.206	0.205
ETHYL-01				0.214		0.165		0.004	0.004		711 PPM	0.004	0.004		0.004	0.004	489 PPM	0.004
ETHAN-01		0.010	0.010	283 PPM	0.010	0.217		0.005	0.005		0.938	0.005	0.005	0.010	0.005	0.005	160 PPM	0.005
CARBO-02						0.006		145 PPM	145 PPM		0.026	145 PPM	145 PPM		146 PPM	146 PPM	4 PPM	146 PPM
WATER						0.008	1.000	0.005	0.005		0.035	0.005	0.005		195 PPM	195 PPM	trace	195 PPM
SODIU-01																		

99