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Abstract 

Automated Method to Assist Breast Cancer Diagnosis 

Jonathan Hernández Capistrán 
 

Breast cancer is the top cause of deaths by cancer in women worldwide. Meth-

ods for early detection of breast cancer are of great help to improve prognosis of 

patients, providing less aggressive treatment, and better time/cost performance. 

Stage 0 of cancer, also known as pre-cancer, is not palpable and is only detected 

by screening mammogram examination. Therefore, the detection of cancer in this 

stage is desirable. This stage is characterized by lesions, known as micro-calcifi-

cations (MCs), the first clinically observable lesions, indicating such disease. 

Their typical size is less or equal to 1 mm, that is why it is difficult to be detected 

by an expert. In recent years, different methods, for micro-calcification detection 

on mammograms (X-ray images from the breast), have been proposed; however, 

the issue is still open to reach acceptable levels of detection rate and false alarm 

rate, preventing its use as a pre-diagnostic tool.  

This work analyzes and proposes a new and simple system for detection of 

MCs, based on the use of the two most used public mammogram data sets, MIAS 

and DDSM. We first, analyze how an expert detects MCs in an image and which 

are its distinctive characteristics; such as intensity values of the surrounding tis-

sue and the prominent peak in a MC. Therefore, a classification according to 

their local surroundings: obvious, subtle and clusters. Additionally, a new MC 

detection method based on (1) morphologic segmentation for detection of regions 

of interest (ROIs), (2) extraction of few and effective attributes from candidates 

to MCs, and (3) one classification stage with two different classifiers, k Nearest 

Neighbor (kNN) and Support Vector Machine (SVM). For dense mammograms 

in MIAS database with a sensitivity of 0.9752, false alarm rate of 0, accuracy of 

0.9876, and 0.9951 for area under the ROC curve using SVM, for a classifier. The 

proposed MC detection method achieves sensitivity, false positive rate, accuracy 

and area under the ROC curve of 0.9664, 0.0224, 0.9683 and 0.9934 for the MIAS 

data set; and 0.9386, 0.0526, 0.9664 and 0.9742 for the DDSM data set. The 
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proposed method gives better results than those from state-of-the-art literature, 

when the mammograms are classified in fatty, fatty-glandular, and dense. Meth-

ods, that report results for dense mammograms, have poor performance; however, 

the presented method shows the best performance for dense mammograms.  
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Resumen 

Automated Method to Assist Breast Cancer Diagnosis 

Jonathan Hernández Capistrán 
 

El cáncer de mama es la principal causa de muerte por cáncer en mujeres de 

todo el mundo. Los métodos para la detección temprana del cáncer de seno son 

de gran ayuda para mejorar el pronóstico de las pacientes, ya que proporcionan 

un tratamiento menos agresivo y un mejor desempeño en tiempo- costo. La etapa 

0 del cáncer, también conocida como pre-cáncer, no es palpable y solo se detecta 

mediante un examen de mamografía. Por lo tanto, la detección de cáncer en esta 

etapa es deseable. Esta etapa se caracteriza por lesiones, conocidas como micro-

calcificaciones (MC), las primeras lesiones clínicamente observables, que indican 

dicha enfermedad. Su tamaño típico es menor o igual a 1 mm, por eso es difícil 

que un experto lo detecte. En los últimos años, se han propuesto diferentes mé-

todos para la detección de microcalcificaciones en mamografías (imágenes de ra-

yos X del seno); sin embargo, el problema aún está abierto para alcanzar niveles 

aceptables de tasa de detección y tasa de falsos positivos, evitando su uso como 

herramienta de diagnóstico previo. Este trabajo analiza y propone un sistema 

nuevo y sencillo para la detección de MC, basado en el uso de los dos conjuntos 

de datos de mamografías públicas más utilizados, MIAS y DDSM. Primero, ana-

lizamos cómo un experto detecta los MC en una imagen y cuáles son sus carac-

terísticas distintivas; tales como los valores de intensidad del tejido circundante 

y el pico prominente en un MC. Por lo tanto, una clasificación de acuerdo con su 

entorno local: obvio, sutil y agrupaciones. Además, un nuevo método de detección 

de MC basado en (1) segmentación morfológica para la detección de regiones de 

interés (ROI), (2) extracción de relevantes características de candidatos a MC, y 

(3) una etapa de clasificación con dos clasificadores kNN y SVM. Para 
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mamografías densas en la base de datos MIAS con una sensibilidad de 0.9752, 

tasa de falsa alarma de 0, precisión de 0.9876 y 0.9951 para el área bajo la curva 

ROC usando SVM, como clasificador. El método de detección de MC propuesto 

logra sensibilidad, tasa de falsos positivos, precisión y área bajo la curva ROC de 

0.9664, 0.0224, 0.9683 y 0.9934 para el conjunto de datos MIAS; y 0.9386, 0.0526, 

0.9664 y 0.9742 para el conjunto de datos DDSM. El método propuesto ofrece 

mejores resultados que los de la literatura actual, cuando las mamografías se 

clasifican en grasosas, glandulares grasosas y densas. Los métodos, que informan 

resultados de mamografías densas, tienen bajo rendimiento; sin embargo, el mé-

todo presentado muestra el mejor rendimiento para mamografías densas. 
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Chapter 1. Introduction 

1.1 Background 

 In 2018, there was 2,093,876 (11.6 % of the total of global new cancer cases) 

of new cases of breast cancer, causing 1,761,007 number of deaths [1].  

Numerous experiments have established that an early detection of breast can-

cer eases the treatment, reducing risks, as well as the mortality percentage in 

25% [2]. For early detection, mammography is an imaging tool with high sensi-

tivity and it is the most recommended by the guidelines of the World Health 

Organization  [3] [4]. 

There are two principal tests performed by a specialized radiologist, screening 

and diagnostic mammograms  [5]. Screening mammogram is used in women who 

have no symptoms; this has the purpose to be widespread for early diagnosis; 

meanwhile diagnostic mammograms is used when some breast lesion or a change 

is seen on a screening mammogram. In USA, a mammogram take per breast is 

completed in 15 minutes [6]; a screening type exam takes from one to two hours 

interpreting the mammogram by a technician and 5 to 7 days to get the final 

results by radiologist [7], Figure 1. This delivery time is mainly because radiolo-

gists specialized in the analysis of mammography are fewer compared with the 

number of mammograms to analyze. 

Delivery time of results:
• USA: 5 to 7 days
• Mexico: 15 to 30 

days

Delivery time of results:
• USA: Up to 1 month
• Mexico: Up to 4 

months

 

Figure 1. Common process in a mammography test, and delivery time per test type. 
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Standard views are performed on screening mammograms and it consist of 4 

views. The two views for each breast are shown in Figure 2: (a) craniocaudal and 

(b) mediolateral oblique; these projections are not orthogonal [8]. For screening 

purposes, the mediolateral oblique is used. Craniocaudal views are used to con-

firm when in doubt on some lesions detected for the screening process. 

  

  

Figure 2. a) Craniocaudal and b) mediolateral oblique views. Under each view is shown 
how the images are taken [8]. 

At the late 1980’s with the introduction of magnification views [9] the detection 

of microcalcification was possible even when the invention of mammography was 

in the late 1950s. It was until 1992 that the Breast Imaging Reporting and Data 

System was created. Therefore, the detection of microcalcification in a mammo-

gram is a relatively new area. 

The public database most used is mini-MIAS [10], it was published on 1994 

and by popular request, the original MIAS Database (digitized at 50 micron pixel 

edge) was reduced to 200 micron pixel edge and clipped/padded so that every 

image is 1024 × 1024 pixels. The second most used database is DDSM [11] was 

published in 2001 using scanners with different resolution between 42 micron to 

50 microns. Both of this database are digitized, this type of database is known 

as Screen Film Mammography (SFM). In 2000 the Food and Drug Administra-

tion approved the first digital mammography (DM) know as full-field digital 
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mammography. DM images are mostly used combined with computer-aided de-

tection (CAD); which is a method that analyzes the mammographic images for 

suspicious areas and considered a second reader. The American College of Radi-

ology (ACR) says that CAD systems, when used for screening, can be a valuable 

procedure in the early detection of breast cancer [12]. The major difference be-

tween these two types of database is that SFM are images that are acquired on 

x-ray film, and then digitized. Whereas, DM is a mammography system in which 

the X-ray film is replaced by solid-state detectors that convert X-rays into elec-

trical signals, improving resolution and contrast making it easier to view small 

lesion on high density breast. An example of this type of database is the INbreast 

[13] with a solid-state detector of amorphous selenium, pixel size of 70 (microns), 

and 14-bit contrast resolution. 

To diagnose how far the cancer has been spread there is a process called stag-

ing. The stage of a cancer describes how much cancer is in the body. It also helps 

to determine how aggressive the cancer is and how to treat it. Cancer stages are 

often using as a survival statistic. Stage-0, also known as pre-cancer, it means 

that not spread beyond where it started to other parts of the breast or other 

organs. This stage does not usually cause symptoms and is not palpable. Usually, 

its discovered while carrying out an imaging test as mammograms. As well, it is 

the earliest stage of breast cancer. Stage zero (stage 0) breast cancer is also known 

as carcinoma in situ. According to the American Cancer Society, people with a 

type of breast cancer that has not spread beyond the breast tissue have a 5-year 

survival rate of 99%. This survival rate means that 99% of women with stage 0 

breast cancer live at least 5 years after diagnosis. [14], as is shown in Figure 3. 
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Figure 3. Breast Cancer Staging measures the spread of the disease upon diagnosis. [15] 

Breast cancer originates in the epithelial cells that lie at the lobules and ducts; 

and under normal conditions these epithelial cells are responsible for making milk 

[16]. When there is a malignant change in these cells, carcinoma or cancer hap-

pens. The types of breast cancer are defined based on the type of tissue and on 

where the cancer begins. Invasive Ductal Carcinoma (IDC) is the most common 

type of breast cancer detected where invasive means that the cancer has spread 

to the surrounding breast tissues and ductal means that the carcinoma began in 

the ducts. IDC. Is the most common cancer detected because most women get a 

mammogram at a late stage. At Stage-0 the cancer cells are confined to a very 

limited area. This stage includes noninvasive breast cancer lobular carcinoma in 

situ (LCIS) and ductal carcinoma in situ (DCIS), this is usually found by mam-

mography, as old cancer cells die, tiny specks of calcium, called micro-calcifica-

tions (MC), form within the broken-down cells. The mammogram shows the can-

cer cells inside the ducts as individual or cluster of these micro-calcifications 

(MCs), which appear either as white specks or as a shadow [17]. Even though 

Stage-0 breast cancer is considered “non-invasive,” it does require immediate 

treatment, typically surgery or radiation, or a combination of both. Chemother-

apy is usually not part of the treatment regimen for earlier stages of cancer. The 

most common types of breast cancer and, the percentages of appearance are 

shown in the Figure 4. 
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Figure 4. Most common breast cancer types. 

Breast microcalcification are lesions whose diameter is inferior to 1 mm. Also, 

malignant MCs are typically less than 0.5 mm and, according to [18], mammo-

graphs with resolution of 50 μm  or better can be used to detect MCs, without 

magnification, of size around 500 μm. 

1.2 State of Art 

In what follows a review of state of the art in relevant and related work to this 
proposal. 

Research about breast cancer based on mammography images has three stages; 

pre-processing, segmenting and classifying. These areas are shown in Figure 5. In 

the pre-processing stage, has four areas; breast segmentation, pectoral segmenta-

tion, density analysis and mammogram enhancement. The objective in breast 

and pectoral segmentation is to eliminate, from SFM images, any object or arti-

fact that is no part of the breast such as labels, markers, scratches and even 

adhesive tape [19]. State of the art research has proposed many algorithms such 

as: as Margin Setting Algorithm (MSA) [20], active contours [21], fuzzy logic [22], 

[23], thresholding algorithms [24]. texture analysis [25], morphological operations 

[26], line detection [27], [28], wavelet transform [29], global an local threshold 

[30], [31].  
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Figure 5. Principal areas of breast cancer research. At the right of the figure shows the pro-

cess that a specialized medic performs (Screening and Diagnosis). 

For segmentation stage, there are two types of detections: microcalcifications 

and masses. Several algorithms to detect these lesions have been using methods 

such as: multilevel thresholding [32], deep learning [33], fuzzy logic [34], texture 

analysis [34], cellular neural network [35], [36], wavelet [37] Gabor [36] feature 

extraction [38] and others. However, in several reported research work, start with 

sub-images of the mammogram and then use them to detect the lesions for the 

given region of the full image. It is not clear, but one could assume that the sub-

images are manually segmented and with a specified method. 

Published work uses publicly available data sets along with ground truth (GT) 

to test their proposed methods for comparison purposes as MIAS and DDSM. 

Some researchers have used private data sets [39] [40], provided by a collaborating 

hospital.  

In 2014, one method is proposed [41] where segmentation is obtained by using 

a LoG filter, followed by a clustering method, based on Fuzzy C-means with 

Features (FCM-WF). It was tested on simulated clusters of micro-calcifications, 

implying that the location of the cluster, within the breast, and the exact number 

of micro-calcifications are known. This method uses the MIAS and a private data 

set. The method is tested in 20 images where all of them contain micro-calcifica-

tions. In the same year, a second method is presented [42]. It is divided in a three-

step process beginning with enhancement by Histogram equalization (HE) and 

Breast Segmentation
Pectoral 

Segmentation
Density Analysis

Microcalcifications Masses

Mammograms 
Registration

Classification of 
lesions

Pre-processing

Diagnosis

Screening

Enhancement

Segmenting

Classifying
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Morphological Enhancement, followed by segmentation, based on Otsu’s thresh-

old, of the region of interest for identification of micro calcifications and mass 

lesions, and the last stage classifies between normal and micro-calcifications and 

then it discriminates between benign and malignant micro calcifications. In the 

classification stage, three methods were used, the voting K-Nearest Neighbor 

classifier (K-NN), Support Vector Machine classifier (SVM) and Artificial Neural 

Network classifier (ANN). The method is tested with 181 images out of 322 im-

ages from the MIAS data set. A third method was proposed in the same year 

[43]. It divided into two main sections, detection of potential MCs region (PMR) 

and PMR classification to true and false positive regions using wavelet decompo-

sition transform. Experiments were performed on 50 out of 322 MIAS images and 

140 DDSM images. 

In 2015, one proposed method [44] consists of three stages, where (1) pre-pro-

cessing is applied for ROI detection and image improvement using Non-Subsam-

pled Contourlet Transform (NSCT) and Super Resolution (SR); (2) several image 

features are extracted, and skewness of each feature is calculated; and (3) an 

AdaBoost algorithm is used for classification and to determine the probability of 

benign and malign disease. This method uses 288 out of 322 MIAS images. In the 

same year, there is a method [45], where the topology/connectivity of individual 

micro-calcifications is analyzed within a cluster using multiscale morphology; a 

set of micro-calcification graphs is generated to represent the topological struc-

ture of micro-calcification clusters at different scales; and graph theoretical fea-

tures are extracted, which constitute the topological feature space for modeling 

and classifying micro-calcification clusters. The k nearest neighbor classifier is 

employed for classifying micro-calcification clusters. The method works with 20 

micro-calcifications from the MIAS data set where 9 are classified as malignant 

and 11 as benign. It also works with 25 micro-calcifications from the DDSM data 

sets with 14 of them classified as malignant and 11 as benign. A third method is 

proposed in 2015 [46], where the micro-calcification segmentation method is based 

on the geodesic active contours (GAC) technique associated with anisotropic tex-

ture filtering. This method employs 158 out of 540 DDSM images. 

In 2016, a proposed method [40] removes label and pectoral muscle adopting 

the largest connected region marking and region growing method; then, it 
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enhances MCs using a combination of double top-hat transform and grayscale-

adjustment function; then, it removes noise and other interference information 

and retains significant information by modifying the contourlet coefficients using 

nonlinear function; finally, it uses a non-linking simplified pulse-coupled neural 

network to detect MCs. The method analyzes 23 MIAS digital mammograms 

containing MCs (7 glandular, 10 dense, and 6 fatty) and 50 mammograms with-

out MCs (15 Glandular, 20 Dense, 15 Fatty). A second method [47] uses the 

location of micro-calcifications as well as topological information (connectivity) 

of these micro-calcifications and individual approaches (location or topology). For 

the topology aspects, there is extraction of regions of interest which contain mi-

cro-calcification clusters. Subsequently, morphology is used to grow detected mi-

cro-calcification and extract their connectivity over a number of scales, which 

generates a topology feature vector. Classification is based on a k nearest neigh-

bor classifier. For location aspects, full mammograms and the cluster locations 

are used to generate probabilistic maps where the feature space contains relative 

locations within these maps, which are fed into an appropriate learning machine. 

As a final step, features from both, topology and location information, are com-

bined to form an overall feature vector which can be used as the basis for classi-

fication. This method is applied to 20 512 × 512-pixel ROIs from MIAS data set 

and to 134 malignant MCs and 146 benign MCs from the DDSM data set. 

In one paper [47], from 2017, a hidden Markov tree model of dual-tree complex 

wavelet transform is applied for micro-calcification diagnosis. The correlation be-

tween different wavelet coefficient is captured. The system is applied to 26 MIAS 

ROIs with 12 benign and 14 malignant and to 150 DDSM ROIs with 82 of them 

benign and 68 malignant. In a second approach [48], from 2017, structured 

microcalcifications on an abnormal mammogram are detected, based on 

multiscale products of eigenvalues of the Hessian matrix. The detected image 

contains calcifications along with background information. To eliminate the 

unnecessary background information, the response image, coming out from 

Hessian matrix approach, is passed to a thresholding technique such as a 

probability density function based Tsallis entropy, in which potential micro-

calcifications are segmented efficiently. The method is applied to 234 clusters 

(150 normal and 84 abnormal), extracted from MIAS, USCF; and to clusters 

from the DDSM data set, with 27 abnormal and 18 normal. In Table 1 presents 
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information from    relevant papers. This table presents the database, number of 

images they use and which is the main pupose of the paper. Chaper 3 uses this 

table for comparision with the results of our proposed work. 

Table 1. Relevant papers and their principal characteristics 

 
Database Images Purpose 

[49] DDSM 158 out of 540 MC’s segmentation 

[44] MIAS 288 out of 322 Masses and MC’s Seg-
mented and classify 

[42] MIAS 181 out of 322 MC’s segmentation 

[41] MIAS and private 
20 out of 20 only 

MC’s images 
MC’s segmentation 

[43] DDSM, MIAS 
50 out of 322 
MIAS - 140 

DDSM 
MC’s segmentation 

[24] MIAS and private  MC’s segmentation 

[50] 
MIAS DDSM 

Combined 

50 out of 322 
MIAS - 197 

DDSM 
MC’s classification 

[51] MIAS  MC’s classification 

 

 

1.3 k Nearest Neighbor (kNN) classifier 

 

The k nearest neighbor (kNN) is a non-linear classifier. To assign a class to an 

unknown feature vector 𝒙 (extracted from a ROI), 𝑘 feature vectors, out of a set 
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of 𝑁 training feature vectors {𝒙𝑖;  𝑖 = 1, … , 𝑁}, are identified as the nearest neigh-

bors to the unknown 𝒙. Each one of the k nearest neighbors, 𝒙𝑖, belongs to a 

corresponding class, 𝒞𝑖, where the number of classes, for the application of de-

tecting MCs, is two (normal and abnormal). Out of the 𝑘 nearest neighbors to 

𝒙, the number of nearest neighbors, 𝑘𝑖, that belong to class 𝒞𝑖 (𝑖 = 1, 2), are 

identified, where 𝑘 =  𝑘1 +  𝑘2. The class, assigned to 𝒙, is the one with the larg-

est 𝑘𝑖. To avoid a tie between two classes, 𝑘 must be an odd number. For a 

deeper and broader treatment of  kNN the reader can consult [52].  

 

1.4 Support Vector Machine (SVM) classifier 

A support vector machine (SVM) is an optimal classifier which is geometrically 

represented by a separating hyperplane which is the furthest away from each 

class after training this classifier with labeled data (supervised learning). The 

SVM, used in this work, used a Gaussian Kernel function, with (1) one output 

node, which provides two possible outcomes, corresponding to two different clas-

ses (micro-calcification or abnormal region, normal region), and (2) four input 

nodes according to the size of the feature vector used. For a deeper and broader 

treatment of  kNN the reader can consult [53].  

 

1.5 Summary 

This section mentioned the relevance of breast cancer worldwide. Typical pro-

cessing time  for the mammography test and for an expert to carry out the 

screening process to then proceed to the diagnosis. Also, the most important 

characteristics of mammograms and the main databases were presented. Then, 

the definition of a microcalcification and its main physical characteristics were 

briefly presented. Finally, the most relevant works related to the segmentation 

and/or detection for microcalcifications were mentioned. 

This dissertation is organized in four chapters: 1 introduction and previous 

relevant work about the topic; 2 problem statement, objectives, material and 
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methods; 3 presents results and 4 presents conclusion, discussion and future work 

of this dissertation.  
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Chapter 2. Methods 

 Problem Statement 

A 2014 OECD Mexico’s report mentions that there are 689 mammography 

units and that 6.1%, of those units, are mobile to reach locations where there are 

no hospitals or where its access is difficult [54]. This number of mammography 

units means that there are 11 mammography units per million women. Mean-

while, countries as Austria, USA, France and Italy have 100, 89, 87 and 86 mam-

mography units per million women, respectively [55]. Furthermore, the number 

of radiologists is an important issue for detection of breast cancer. For example, 

Mexico has 124 radiologists with specialty in mammograms [56] and 18.28 million 

women between 40 to 69 years old, age recommended to get a screening mam-

mogram [57], [58]. Which means that there are close to seven radiologists, spe-

cialized in mammograms, per million women. The Table 2 summary the data col-

lected in five different countries. 

Table 2. Number of radiologist and mammography units in five different countries. 

 

 

Coun-

try 

Total num-

ber of mam-

mography 

units 

Mammogra-

phy units per 

million women 

Total number 

of radiologists 

specialized in 

mammography 

Radiol-

ogist spe-

cialized 

in mam-

mogra-

phy per 

million 

women 

Austria 420 100 150 36 

USA 13,552 89 NA NA 

France 2,700 87 NA NA 

Italy 2,560 86 1147 38 

Mexico 689 11 46 7 

 

In the U. S. A., a mammogram study is completed in 15 minutes [6], it takes 

from one to two hours to interpret the mammogram by a technician, and 5 to 7 

days to get the final results by the radiologist [7] This delivery time is mainly 
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because radiologists, specialized in the analysis of mammography, are fewer com-

pared with the number of mammograms to analyze.  

The problem to segments/locates microcalcifications has not yet been solved. 

This is mainly because of the size of microcalcification; and the fibro-glandular 

density of a given breast. Algorithms proposed in the state of art have not solved 

due to low resolution of the screen film mammography. Another problem is the 

variation of resolution causing to retrain and/or change significant parameters to 

detect MCs in different databases. Current approach has been to standardize 

resolution by decreasing size; thus, loosing resolution and possibly making impos-

sible to detect the smallest MCs. From the state-of-the-art review there is no 

evidence that tests included enough MCs in a high-density breast since it is easily 

confused with the background, and in general do not specify if the test set in-

cluded subtle MCs and how many.  

Micro-calcification lesions are difficult to detect by human vision because the 

size of micro-calcification and a trained human vision can distinguish 30 shades 

of gray with difficulty [59]. For this reason, the false positive rate of the radiolo-

gist is reported as 15% [44] and the false negative rate as 20 % [60].  

From medical point of view, when a CAD system is applied to detect lesions 

for screening is susceptible to errors, like false positive or false negative. In a 

review of CAD systems, their conclusion is that 50 out of 100,000 incremental 

cancer cases detected from screened mammograms by CAD systems, but generate 

970 per 100,000 unnecessary biopsies this means an incremental recall of healthy 

women of 1190 per 100,000 [61]. 

Computer-aided detection (CAD) for mammography is a helping tool that can 

accelerate reading and help increase diagnosis’ accuracy. 

There are various studies that revised the efficacy of CAD. CAD plus single 

reading usually shows an increase in sensitivity and/or cancer detection rate, 

meanwhile there is no significant difference when comparing with double reading 

by radiologists. Many studies also report an increase in recall rate when adding 

CAD [62]. 
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In a Breast Cancer screening programme there are two main possibilities. After 

the first reading use another blinded radiologist and the other possibility is use 

CAD for a second reading, as shown on  

Also, in the acquisition of the image have been occupied different types of 

enhancement algorithms. These algorithms are frequently included in the prepro-

cessing stage.  

 

Figure 6. The two most common breast cancer screening programme 

Other challenges are the resolution of some screen films that are digitalized at 

0.2 mm per pixel. Hence, it is highly uncertain to say anything in areas of 2x2 or 

3x3 pixels to detect microcalcification of size of 0.5 mm. Also, if the resolution 

changes, the training step must be performed again on works that use any kind 

of training.  

Until now it is estimated that 98%, of the reviewed state of art, test the CAD 

system with one or two public databases and 87% their test sets are sub-images 

manually obtained by segmentation with no specified procedure. 

Given these, a proposed solution is to design an algorithm to screen mammo-

grams with the following features: 

• Microcalcification segmentation/detection 
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• Directly uses resolution on and better or equal than 100 micron per pixel 

• Uses datasets of Digitized film screen, and Full field digital mammo-

grams 

• Algorithm provides areas with high probability to have lesion and/or 

cluster of lesions 

The above characteristics should help reduce the 15% FPR [44] and the 18% 

FNR [63] by the radiologist, as well as their diagnostic time. 

One possible way to solve this is imitating the process that a radiologist spe-

cialized in mammograms does. It means extracting the general features that 

he/she observes to identify a MC independently of the image source, resolution 

or mamma type.  

A  CAD algorithm will help the mammogram specialized radiologist to identify 

easier and faster these lesions, decreasing the workload per mammogram, and 

possibly improving his/her accuracy, by presenting only the regions of interest 

with possible MCs to be diagnosed by the radiologist, relieving them from the 

work to screen all the mammogram, and concentrated only on the areas that 

possibly contain MCs, as is show in Figure 7. 

 

Figure 7. Proposed and actual screening process. 

For the aforementioned reasons the development of automatic systems for pre-

diagnosis of breast cancer performs a quick assessment of a mammogram and to 
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indicate if there is any type of micro-calcification that requires the intervention 

of a specialist. In addition, the algorithm of detection of micro-calcifications must 

be simple to facilitate its subsequent mass deployment. The simplification of early 

and preliminary diagnosis will be supported by algorithms with low computa-

tional resources. In addition, the number of radiologists, who are specialized in 

mammography, is much lower than the number of women with breast cancer. 

For these reasons, this work proposes an algorithm, which detects micro-calcifi-

cations on digital/digitized mammograms based on morphologic processing, su-

pervised learning and very small set of features. These arguments encourage the 

implementation of devices for autonomous diagnostic that will help to reduce the 

number of women who attend a specialist without apparent breast cancer and, 

most importantly, to detect early risks of breast cancer by finding the presence 

of MCs on mammograms and encouraging patients to follow specialized treat-

ment that will give them best prognosis. 

 Dissertation Goals 

2.2.1 General Goal 

Design an algorithm that can detect isolated and clustered microcalcifications 

in diverse breast density, and different image resolution. The algorithm should 

be competitive with state of art results. 

2.2.2 Specific Goals 

• Use natural characteristics of a microcalcification observed on a mam-

mogram image 

• Use at least two public databases of different resolution with ground-

truth for testing 

• Flexible to breast density 

• Parameterized for mammograms with different resolution 

• Algorithm should consider cues given by mammography atlases 

2.2.3 Dissertation Contribution and Organization 

Expected contributions of this research work may be summarized in the fol-

lowing points: 

• Intensity model for microcalcifications 
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• Application of a measure of contrast for MCs, by using Weber’s formula. 

• Results will be generalized for different: 

o Resolution 

o Breast density 

o Contrast values for obvious, regular, and subtle MCs. 

 Material and Methods 

2.3.1 Mammogram data sets 

Two of the most popular public data sets in the scientific literature are used 

for this research, the Mammographic Image Analysis Society Digital Mammo-

gram Database, also known as MIAS [17], and the Digital Database for Screening 

Mammography, DDSM [18]. The first data set contains 322 medio–lateral (MLO) 

mammograms digitized at a spatial resolution of 50 
𝜇𝑚

𝑝𝑖𝑥𝑒𝑙
 and 8 

𝑏𝑖𝑡𝑠

𝑝𝑖𝑥𝑒𝑙
. However, 

this database has been reduced 200 
𝜇𝑚

𝑝𝑖𝑥𝑒𝑙
 and padded so that every image is 1024 

X 1024 pixels, this reduced database is named mini-MIAS and is widely used. 

Images, from this data set, present two categories of abnormality, 207 normal 

images and 20 images with micro-calcifications. Images, with MCs, are charac-

terized by defined areas on the Ground Truth (GT). There are three MIAS im-

ages with micro-calcifications, but without defined areas in the GT. Images with 

micro-calcifications are provided along with their corresponding GT while normal 

images were not analyzed so that they do not have GTs. These two image cate-

gories are also sub-classified in terms of breast density type; fatty, fatty-glandu-

lar, and dense. The ground truth specifies information regarding Regions of In-

terest (ROIs) which are clusters with micro-calcifications. The set of 20 images, 

with specified ground truth, contains a total 25 regions of interest with micro-

calcification clusters or abnormality clusters. A ground truth cluster is identified 

by (1) a set of coordinates (𝑥, 𝑦) where each set of coordinates corresponds to 

the center of an abnormality cluster; and (2) a region radius (in pixels) which 

represents a circle enclosing the abnormality. A complete description of the MIAS 

data set, based on breast density, is shown in Table 3.  
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Table 3. Description of MIAS data set in terms of breast density. 

MIAS database 

 Fatty 
Fatty-
glandular 

Dense Total 

Number of images with clusters of mi-
crocalcification  

5 6 9 20 

Images with isolated microcalcifications 1 1 1 3 

Number of clusters in GT Images 5 6 14 25 

microcalcifications regions 50 97 121 268 

Images without microcalcification clus-
ters 

66 65 76 207 

 

The DDSM data set was digitized by four different scanners, DBA M2100 

ImageClear (42 
𝜇𝑚

𝑝𝑖𝑥𝑒𝑙
 and 16 

𝑏𝑖𝑡𝑠

𝑝𝑖𝑥𝑒𝑙
), Howtek 960 (43.5 

𝜇𝑚

𝑝𝑖𝑥𝑒𝑙
 and 12 

𝑏𝑖𝑡𝑠

𝑝𝑖𝑥𝑒𝑙
), Lumisys 

200 Laser (50 
𝜇𝑚

𝑝𝑖𝑥𝑒𝑙
and 12 

𝑏𝑖𝑡𝑠

𝑝𝑖𝑥𝑒𝑙
), and Howtek MultiRad850 (43.5 

𝜇𝑚

𝑝𝑖𝑥𝑒𝑙
and 12 

𝑏𝑖𝑡𝑠

𝑝𝑖𝑥𝑒𝑙
). 

It is organized into cases and volumes. A case is a collection of images and infor-

mation corresponding to one mammography exam for one patient. A volume is a 

collection of cases, collected for purposes of distribution ease. The data set has 

2,620 cases available in 43 volumes from which there are 106 mammograms with 

micro-calcifications This database used the information related to this data set 

as shown Table 4. This Table does not contain the same type of detailed infor-

mation as Table 3 because DDSM images in the database do not include breast 

density type. In this work we used the CBIS-DDSM (Curated Breast Imaging 

Subset of DDSM) is an updated and standardized version of the DDSM. The 

CBIS-DDSM collection includes a subset of the DDSM data selected and curated 

by a trained mammographer [64], [65]. The images have been decompressed and 

converted to DICOM format. Updated ROI segmentation and bounding boxes, 

and pathologic diagnosis for training data are also included. For this case the GT 

is identified pixel level boundary of the lesion 
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Table 4. Description of DDSM data set in terms of abnormality. 

DDSM 

 Abnormal Normal 

Images 29 20 

microcalcifications 

regions 
114 114 

 

 

Figure 8. Principal regions from a mammography 

A typical mammography has different parts, as shown in the Figure 8. As it 

can be observed in the figure it is necessary to remove the labels and the back-

ground in a preprocessing stage. It should be mentioned that there are two types 

of background, the background that is located next to the edge of the breast (on 

digitized mammograms regularly it is not completely black, there are exceptions 

like in database type FFDM) and the background that is located on the side of 

the pectoral muscle (the intensity value in this case is 0 ). Also, it can be observed 

that the background is blurred with the edge of the breast, making it difficult to 

define exactly the edge of the breast. This removal process is known as breast 

extraction. One of the regions that has taken relevance is the area of the pectoral 

muscle. This is because in a CAD, the existence of the pectoral muscle may 
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mislead the diagnosis of cancer due to its high-level similarity to dense tissue 

breast. In addition, some other challenges due to manifestation of pectoral muscle 

in the mammogram data include inaccurate estimation of the density level in the 

breast region. Regardless of improvement of imaging technology and algorithms, 

accurate segmentation of the breast boundary and detection of the pectoral mus-

cle are still challenging tasks. Obtaining its boundaries leads to useful information 

about the position of the breast and its orientation as well as the general intensity 

of the gray levels in the image. These steps are shown in Figure 9 

Mammogram Breast Extraction

Removal of pectoral 
muscle 

 

Figure 9.General pre-process for breast extraction 

Extraction of abnormality clusters, from a GT image, is accomplished by a 

radiologist, who specifies (1) the image coordinates (𝑥, 𝑦) of the center of each 

abnormality cluster, and (2) an approximate radius, in pixels, of a circle enclosing 

an abnormality cluster, as it is shown in Figure 10. In the proposed approach, 

rather than enclosing an abnormality cluster by a circle (central part of Figure 

10), a square is used (right part of Figure 10), given that the search for individual 

micro-calcifications is performed by a scanning process that takes place on a 

rectangular area.   
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Figure 10.  Digital mammogram, from the MIAS data set, with one cluster of micro-calcifica-

tions. 

The general algorithm, which is shown in Table 5, is applied to images from 

any data set, MIAS or DDSM, and from any density group, fatty, fatty-glandular, 

and dense. The input to the algorithm is a GT image, which contains squares, 

where each square encloses a micro-calcification cluster. Thus, the size of the 

enclosing square depends on the size of the enclosed micro-calcification cluster. 

Each enclosed cluster might consist of one or more micro-calcifications. The com-

mand, for extraction of an abnormality cluster, is executed in the second line of 

the general algorithm, listed in Table 5. Each ROI or micro-calcification candi-

date, on the abnormality cluster, must be detected and extracted individually 

(fourth line of the general algorithm, listed in Table 5.  

Table 5. General algorithm for extraction of ROIs from ground truth images. 

 

 

 

 

1 

2 

 

3 

4 

 

5 

6 

input : data set image with micro-calcification clusters 

output : set of image patches corresponding to micro-calci-

fication candidates 

 

Begin 

extraction of rectangular regions enclosing abnormality clus-

ters from ground truth image 

 for each cluster 

  extraction of a patch with a micro-calcification can-

didate 

 end 

End 
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 Microcalcification Segmentation 

In this work we focus on the detection of MCs as the means for early diagnosis. 

A simple method to segment an MC is the thresholding. This technique has been 

used by some works as, [66]–[71], at least on one stage of the process. However, 

all microcalcifications are not visually equal. This is due that the intensity of the 

tissue that surrounds the MC could be from high to low compared with the 

intensity of MC. The breast tissue is categorized from mostly fatty tissue to 

extremely dense tissue with very little fat in Figure 11 shows samples for the 4 

breast density types. In addition, for the first time in more than 20 years of 

regulating mammography facilities, the agency is proposing regulations that 

would help improve the quality of mammography. It is now a federal law develop 

breast density reporting language that must be included in patient letters and 

health provider reports [72] 

 

Figure 11.- Breast density variety [73] 

Therefore, automatic segmentation of microcalcifications (MCs) can be a chal-

lenging task, mainly due to the high breast density (Extremely Dense and Scat-

tered areas of fibro-glandular). A high-density breast area makes very challenging 

the observation of microcalcifications, given the low contrast of the MC area to 

the background. Therefore, it is convenient to classify the type o microcalcifica-

tion according to tissue that surrounds it. This research work first approached 

this by selecting a set of methods and comparing them in a set of cases that 

Extremely 
Dense
10%

Scattered 
areas of 

fibrogland
ular 

density
40%

Heterogen
eously 
dense
40%

fatty 
breast
10%
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include different tissue densities. we identify three: subtle, obvious and cluster of 

MCs, as they are shown in Figure 12.  

 

a) 
 

b) 

 

c) 

Figure 12. Classification of MCs according to their surrounding tissues; a) Subtle, b) obvi-

ous and c) Cluster type. 

To measure the different contrasts of obvious and subtle MC’s. There are sev-

eral measures of contrast, one of the most common measure is the Weber contrast 

[74], that is defined as: 

𝐶𝑀 =
𝐼 − 𝐼𝑏

𝐼𝑏
 

Where 𝐼 is the intensity of the center pixel or the mean pixels of the foreground, 

and 𝐼𝑏 the intensity of one pixel consider as the background or the mean of some 

pixels consider as the background. From the analysis of several microcalcifications 

the range of the values for subtle, normal and obvious groups was estimated. For 

the subtle-group, the Weber contrast is under or equal to 0.1; normal MCs have 

an interval above 0.1 but under or equal to 0.2 and for the obvious group values 

above 0.2. Table 6 summarizes the contrast level range for this particular measure. 

 A sample of some microcalcifications for each group and the respective Weber 

contrast values, are shown in Figure 13. As can be seen in this image the MCs 

that are visible, have 𝐶𝑀 values above 0.1, that means MCs classify as normal or 

obvious. In the other hand, when the MC is not visible, as in Figure 13 a), the 𝐶𝑀 

is under or equal to 0.1. 

 



24 
 

Table 6. Range of values for weber contrast measures of different groups 

Type MC 𝐂𝐌 

Subtle ≤0.1 

Normal 0.1< CM ≤0.2 

Obvious >0.2 

 

 

a) 

 

b) 

 

c) 

Figure 13. Examples for some Weber contrast values of a) subtle b) normal and c) obvious 

groups. 

 

From a literature review [75] [76] the most commonly used thresholding algo-

rithms are proposed by [77], [78], [79], [80], these threshold methods are Inter-

modes, Kittler and Illingworth, Entropy and Otsu respectively.  

As part of the research work, a review was published on a paper in 13th Inter-

national Conference on Electrical Engineering, Computing Science and Auto-

matic Control (CCE), Mexico, City, 2016, Mexico named “Thresholding Methods 

Review for Microcalcifications Segmentation on Mammography Images in 
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Obvious, Subtle, and Cluster Categories” [81]. This paper compares four com-

monly used thresholding techniques to segment mammography images sections 

divided in three groups: obvious, subtle and clusters; due to their microcalcifica-

tion context. The purpose of this paper it is to show which technique has a better 

performance for mammography images.  

 

Figure 14. General process in the Microcalcifications segmentation 

Figure 14 shows the general process used for the segmentation of MCs. That is, 

from an image patch, defined in detail in the corresponding paper, different 

threshold values are generated using the 4 methods. Also, Figure 14 shows the 

histograms of each image and their corresponding threshold points for each 

method. Then, a comparative analysis is performed to decide how many MCs 

were detected for each method. In a special case, here the Otsu method is com-

pared because it is the most used in the literature, and the entropy method, that 

gives better results. The results from the reported paper shows that the Entropy 
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method is better than twice as much the Otsu method in both obvious and subtle 

MCs. Table 9 of the results chapter each of the methods with their respective 

results is reported in detail. 

 

 Microcalcification modelling and classification 

A microcalcification region is 21 X 21 pixels (ROI), regions were extracted from 

both databases. The size of the ROIs is due that the resolution of the mini-MIAS 

database is 200 microns and we want a MC to have enough tissue around it to 

be able to distinguish it, knowing that the maximum size of an MC is 1 mm. 

Also, this size helps in case of a cluster. This data set of ROIs with MCs candi-

dates are known as true positives. In addition, it is necessary to have other data 

set of ROIs, known as true negatives, which are regions that do not contain any 

type of MCs. The size of these regions should also be 21 X 21. 

Table 7 describes the general steps of an algorithm to generate this data set. 

A normal image, with a large breast region, is randomly selected at each loop of 

the for cycle. From each randomly selected normal image (command executed in 

the third line of the general algorithm listed in Table 7, a candidate is randomly 

extracted (command executed in the fourth line of the algorithm listed in Table 

7. Each normal image is tagged with an image number, and to generate a set of 

randomly selected normal images, 𝑛 random image tag numbers are generated by 

means of a discrete uniform probability density function, 𝑓𝑥(𝑥) =
1

𝑚
; where 𝑥 ∈

{1,2, … , 𝑚} is an image tag number; and 𝑚 is the total number of images from 

each type of mammogram density. Parameters, (𝑛, 𝑚), are (𝑛 = 121, 𝑚 = 76), 

(𝑛 = 97, 𝑚 = 65) and (𝑛 = 50, 𝑚 = 66) for dense, fatty-glandular and fatty 

mammograms, respectively. The criteria to choose a value for 𝑛, is to have the 

number of candidates, which are MCs, equal to the number of candidates, which 

are not, for each mammogram density. According to Table 3, row for microcalci-

fications regions, there are 121 MCs in 9 dense mammograms, 97 MCs in 6 fatty-

glandular mammograms, and 50 MCs in 5 fatty mammograms. 
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Similarly, one pair of random numbers, (𝑟, 𝑐), is generated for each randomly 

selected image. Parameters 𝑟 and 𝑐 are used as the coordinates of the center of a 

randomly chosen ROI, of 21 X 21 pixels, on the corresponding randomly chosen 

normal mammogram.  

Table 7. Random generation of a set of n micro-calcification candidates from the set 

of normal images without abnormality clusters identified by the radiologist. 

 
 
 
 
 
1 
2 
 
3 
 
4 
5 

input : data set of normal images without abnormality 
clusters identified  
output : data set of image patches of 21 × 21 pixels 
 

Begin 
for a given number n of ROIs required 
 random selection of a normal image along with a set of im-

age coordinates (𝑟, 𝑐) 
 extraction of an image patch with center at (𝑟, 𝑐) and size 

of 21 × 21 pixels 
end 

end 
 

 Extraction of micro-calcifications candidates 

from abnormality clusters 

Extraction of micro-calcifications, from an abnormality cluster, is separated 

into different stages, for segmentation (contour detection, noise suppression, 

sharpening), binarization, feature extraction, and classification as it is depicted 

in Figure 15. 
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Figure 15. Different stages for detection of micro-calcifications, segmentation, binarization, 

feature extraction, and classification  

A mammogram (upper left corner in Figure 15) is a digital grayscale image 

which is denoted as a function 𝑓(𝑟, 𝑐) on the two-dimensional discrete space 

(𝑟, 𝑐) ∈  𝒁2, where 𝑟 stands for row and 𝑐 stands for column.  

Morphological processing [82] of grayscale images is used for binarization of 

images of interest as well as detection of regions of interest. From the upper 

central part of Figure 15, which shows an abnormality cluster, it is observed that 

brighter ROIs (such as micro-calcifications) correspond to local maxima of the 

function, 𝑓𝑚𝑎𝑥. To achieve segmentation of micro-calcification candidates, bright 

regions, corresponding to local maxima of 𝑓(𝑟, 𝑐), are emphasized; while the back-

ground, corresponding to local minima of 𝑓(𝑟, 𝑐), is removed.  

Because of the fact that dilation of gray-level images enhances bright regions 

and suppresses dark regions while eroding enhances dark regions and suppresses 

bright regions, where the area of the suppressed region is smaller than the area 

of the specified structuring element 𝑏(𝑟, 𝑐), both operations are combined, 

through the use of the high-pass filter, Beucher Gradient [83], for extraction of 
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local maxima (micro-calcification candidates) and removal of local minima (back-

ground). The erosion of a gray-level image 𝑓(𝑟, 𝑐) by a structuring element 𝑏(𝑟, 𝑐) 

at location (𝑟, 𝑐) is obtained by selecting the minimum value of 𝑓 − 𝑏 inside the 

region of intersection over which both functions 𝑓 and 𝑏 are defined according to  

 

 [𝑓 ⊝ 𝑏](𝑟, 𝑐) =  min
(𝑥,𝑦)∈𝑏

{𝑓(𝑟 − 𝑥, 𝑐 − 𝑦) − 𝑏(𝑥, 𝑦)}. (1) 

 

The dilation of a gray-level image 𝑓(𝑟, 𝑐) by a structuring element 𝑏(𝑟, 𝑐) at 

location (𝑟, 𝑐) is defined by finding the maximum value of 𝑓 + 𝑏 inside the com-

mon region between both, function 𝑓 and structuring element 𝑏, according to  

 

 [𝑓 ⊕ 𝑏](𝑟, 𝑐) =  max
(𝑥,𝑦)∈𝑏

{𝑓(𝑟 − 𝑥, 𝑐 − 𝑦) + 𝑏(𝑥, 𝑦)}. (2) 

 

By considering flat structuring elements with zero entries, eroding or dilating 

of a gray-level image with a structuring element consists in finding the minimum 

or maximum value of the image inside the region bounded by the intersection of 

the image and the structuring element.  

The morphological gradient, known as Beucher Gradient, is the arithmetic dif-

ference between the dilated and the eroded version of the gray level image of 

interest 𝑓(𝑟, 𝑐), by a structuring element 𝑏(𝑟, 𝑐), 

 

 𝑔(𝑓(𝑟, 𝑐)) =  [𝑓 ⊕ 𝑏](𝑟, 𝑐) −  [𝑓 ⊝ 𝑏](𝑟, 𝑐) (3) 

 

where this morphological operation represents the maximum variation of gray 

level intensities within a pixel neighborhood. The result of applying Beucher Gra-

dient on a mammogram is shown in the upper right part of Figure 15.  
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To improve the quality of the filtered image, a 3×3 median filter is applied, a 

non-linear filtering technique to remove noise while preserving edges. This filter-

ing technique runs in a pixel-by-pixel fashion, replacing each pixel by the median 

of neighboring pixels inside a 3×3 window. To enhance edges, a process, called 

unsharp masking, is applied, where a smoothed version of the image (Gaussian 

low-pass image), 𝑓𝑠𝑚𝑜𝑜𝑡ℎ(𝑟, 𝑐), is subtracted from the original image, subtracting 

away the low-frequency components of the signal, and yielding the high-frequency 

content, 

 

 𝑓ℎ𝑖𝑔ℎ−𝑝𝑎𝑠𝑠(𝑟, 𝑐) =  𝑓(𝑟, 𝑐) − 𝑓𝑠𝑚𝑜𝑜𝑡ℎ(𝑟, 𝑐) (4) 

 

where the standard deviation of the Gaussian low-pass filter, was set to 2, and 

the high-pass image component can be used for sharpening by adding it to the 

original image. Thus, the complete unsharp masking operator is given by 

 

 𝑓𝑠ℎ𝑎𝑟𝑝𝑒𝑛(𝑟, 𝑐) =  𝑓(𝑟, 𝑐) + 𝑘 ×  𝑓ℎ𝑖𝑔ℎ−𝑝𝑎𝑠𝑠(𝑟, 𝑐) (5) 

 

where 𝑘 is a scaling constant, set to 0.7. The result of applying median filtering, 

followed by unsharp masking is shown in the lower right part of Figure 15.  

The segmentation stage (morphologic processing, median filtering, unsharp 

masking) is essential to the success of micro-calcification detection since this stage 

reduces background variations, noise, and enhances edges of ROIs or candidates. 

Then, thresholding is applied to generate a binary image where ROIs are white, 

and the background is black, as it is depicted in the lower central part of Figure 

15. By analyzing the histogram of multiple 21 × 21-pixel image patches, with 

segmented micro-calcifications, the threshold value, for binarization, is estab-

lished to the 90 % of the highest gray value of the enhanced GT region of interest. 
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One impairment of binarization is that remaining noise might be misclassified 

as a candidate to micro-calcifications. To reduce the likelihood of the occurrence 

of these misclassifications, ROIs, with radii smaller than 0.1 mm, are eliminated 

using opening with a disk-like structural element of 0.2-mm diameter. The reason 

for choosing a structuring element of 0.2-mm diameter is based on the consider-

ation that the diameter, of the smallest micro-calcification, is 0.2 mm (4 pixels 

for the MIAS). The opening of a binary image 𝑓(𝑟, 𝑐), by a structuring element 

𝑏(𝑥, 𝑦), is given by 𝑓 ∘  𝑏 = (𝑓 ⊝  𝑏)  ⊕  𝑏, and it eliminates objects smaller than 

the structuring element. Resolution of digital mammograms, for both data sets, 

is 50 µm per pixel. Thus, the size of the structuring element, in pixels, is 

0.2 𝑚𝑚/𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟

50 𝜇𝑚/𝑝𝑖𝑥𝑒𝑙
= 4 

𝑝𝑖𝑥𝑒𝑙𝑠

𝑑𝑖𝑚𝑒𝑡𝑒𝑟
.  

Another consideration is that the diameter, of the largest micro-calcification, 

is 1 mm. Thus, the size of the circle, which encloses a candidate to micro-calcifi-

cation, is 
1 𝑚𝑚/𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟

50 𝜇𝑚/𝑝𝑖𝑥𝑒𝑙
= 20 

𝑝𝑖𝑥𝑒𝑙𝑠

𝑑𝑖𝑚𝑒𝑡𝑒𝑟
, and the area of the corresponding square is 

chosen as 21× 21 pixels. The extraction of the set of candidates to micro-calcifi-

cation or ROIs (output of the general algorithm listed in Table 1), from an ab-

normality cluster, is shown in the lower left part of Figure 15. Each candidate is 

contained on a 21× 21 image patch. The center of the patch is established at the 

position of the highest gray level value of the ROI. 

To recover the complete shape of candidates, at all locations of interest, an 

algorithm for extraction of connected components is used. Another motivation 

for extraction of connected components is to assign a label to each region of 

interest for sub-sequent automatic extraction of properties from each labeled 

ROI, mainly the position of the highest gray level value inside the region. Let 

𝑓(𝑟, 𝑐) be a binary image containing one or more connected components, then 

another image segment 𝑓0(𝑟, 𝑐), of the same size as 𝑓, is initialized with all its 

elements being zero, corresponding to black background, except those elements 

at locations where it is known there are white connected components in 𝑓0(𝑟, 𝑐), 

which is set to one. The goal is to start with the initial image 𝑓0(𝑟, 𝑐) and even-

tually to extract all the connected components by performing the following iter-

ative process; 
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 𝑓𝑘  =  (𝑓𝑘−1  ⊕ 𝑏)  ∩  𝑓 (6) 

 

Where, 𝑏(𝑟, 𝑐) is a suitable structuring element for extraction of connected 

components. The iterative process is finished when 𝑓𝑘  =  𝑓𝑘−1 with 𝑓𝑘 containing 

all the labeled connected components. 

 

To compare works that detect microcalcifications, it is essential to measure the 

efficiency of the algorithms. To perform an evaluation is necessary to use 

measures of efficiency previously in other works. These are: the area found by 

the algorithm and intersection with the GT as true positive (TP), and the area 

found but does not intersect any GT area as false positive (FP). Additionally, 

the area that is not in GT and is not given by the algorithm as true negative 

(TN). Finally, the area that is in GT but was not found by the algorithm as false 

negative (FN). From the literature review, the way these measures are found 

varies, Table 8 points out some of the differences. 

Table 8. State of the art Comparison diversity 

Ref. Decision(s) to define TP, TN, FN and FP  

[84] Overlap larger than 50% by human observation 

[85] Area overlap measure (AOM) automated, ideal value equal to 1. 

[24] 

Draw a bounding circle to the detected MCs, 

More than 2/3 bounding circle of the MC clusters are overlapped 

with ground truth becomes a true-positive (TP). 

For clusters area, if we detect at least one it is as TP. 

For mammograms MC’s, if we cannot detect out any MC’s, we 

consider it as true negative (TN) 

[23] Completeness, CM, correctness, CR and quality, ACC 

[86] Confusion matrix 
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From the above, it can be observed that one of the main problems is the com-

parison of results between different databases. For example, the GT in the MIAS 

database identifies lesions using a circle while DDSM does so by surrounding the 

pixel-to-pixel lesion, meaning that the contour can be irregular. Also, in the 

DDSM database, whether the MCs are very small then the GT points out them 

using only the coordinates of one pixel. In addition to this, the form of comparison 

between different algorithms varies as can be seen in the Table 8. 

Knowing that the MC can be classified in the categories previously  mentioned; 

it is useful to visualize a micro-calcification in the three-dimensional space, as a 

gray level function of coordinates (𝑥, 𝑦), as it is observed in Figure 16. This three-

dimensional reconstruction provides an approximation of the projection of an 

actual micro-calcification into a set of intensity values on a digital mammogram 

through absorption of X-ray radiation. The three-dimensional reconstruction of 

a micro-calcification consists of a prominent peak in relation to local surroundings 

on the mammogram. Thus, it is feasible the modeling of a micro-calcification 

based on a set of surface levels.  

 

 

Figure 16. Three-dimensional visualization of one micro-calcification on a digital mammo-

gram. 

The results of this work were published in the Journal of Medical Systems 

titled “False Positive Reduction by an Annular Model as a Set of Few Features 

for Microcalcification Detection to Assist Early Diagnosis of Breast Cancer” [87]. 
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The work reported in this paper proposes to extract only four features from a 

candidate. To accomplish this, information is obtained from three different sur-

face levels assigned to each ROI, by using a mask, which contains the distribution 

of these surface levels. The left part of Figure 17 shows a ROI of 21 X 21 pixels 

and with its center at the maximum intensity value. Information, for each surface 

level of the ROI, is extracted by overlapping the ROI with a mask which shows 

the distribution of each of the three surface levels. The right part of Figure 17 

shows, the mask along with the distribution of each surface level. It can be seen 

that the surface level distribution consists of three concentric annulus (ring-

shaped object) with its respective radii 𝑅, 𝑅 + 2 and 𝑅 + 4. This work arrived to 

having 𝑅 = 3, by considering known sizes of micro-calcifications at 50 microns 

per pixel, and observing the corresponding method performance. Each annular 

region, 𝐴𝑎𝑛𝑛𝑢𝑙𝑢𝑠, provides information of interest regarding each surface level. 

Each annular region is labeled by an integer number in the set {1, 2, 3}. 

 

Figure 17. Region of interest (left part) along with the corresponding mask of three 

surface levels (right part). Overlapping the ROI and the mask allows the extraction of 

information from different surface levels for sub-sequent feature extraction. 

After overlapping the mask with one ROI, information from the three annular 

regions is used for extraction of a four-entry feature vector, 𝒇 =  [𝑓1, 𝑓2, 𝑓3, 𝑓4]𝑇, 

according to, 

 

 𝑓1 = 𝑚𝑎𝑥(𝐴𝑎𝑛𝑛𝑢𝑙𝑢𝑠1) − 𝑚𝑎𝑥(𝐴𝑎𝑛𝑛𝑢𝑙𝑢𝑠2) (7a) 
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 𝑓2 = 𝑚𝑎𝑥(𝐴𝑎𝑛𝑛𝑢𝑙𝑢𝑠1) − 𝑚𝑎𝑥(𝐴𝑎𝑛𝑛𝑢𝑙𝑢𝑠3) (7b) 

 

 𝑓3 = 𝑚𝑒𝑎𝑛(𝐴𝑎𝑛𝑛𝑢𝑙𝑢𝑠1) − 𝑚𝑒𝑎𝑛(𝐴𝑎𝑛𝑛𝑢𝑙𝑢𝑠2) (7c) 

 

 𝑓4 = 𝑒𝑛𝑡𝑟𝑜𝑝𝑦(𝐴𝑎𝑛𝑛𝑢𝑙𝑢𝑠1) − 𝑒𝑛𝑡𝑟𝑜𝑝𝑦(𝐴𝑎𝑛𝑛𝑢𝑙𝑢𝑠2) (7d) 

 

where functions 𝑚𝑎𝑥(), 𝑚𝑒𝑎𝑛(), and 𝑒𝑛𝑡𝑟𝑜𝑝𝑦() are the maximum, mean and 

entropy values, respectively, of the corresponding annular region intensity values. 

The entropy value is computed according to, 

 

 

𝐻 = |− ∑ 𝑝𝑖 log2(𝑝𝑖)

𝑖

| 
(8) 

 

where 𝑖 ∈  [0, 255] is a gray level value, and 𝑝𝑖 is the probability associated 

with gray level value 𝑖, i. e., the probability density function of an annular region. 

The feature selection, in the proposed method, has the purpose of achieving 

low computational complexity and simplicity, and the additional purpose of being 

representative of the process of that a radiologist follows. In an ideal micro-cal-

cification, the maximum intensity value is at the center of the MC enclosing 

region. It can be modelled as a Gaussian function. The first feature, 𝑓1, represents 

the difference between the peak intensity value, in the first annular region, and 

the peak, on the second annulus. Ideally, if a micro-calcification exists, this dif-

ference must be greater than or equal to 1 pixel; otherwise, if a micro-calcification 

is not present, then the difference might be less than 1 pixel. This idea is similar 

for second feature, 𝑓2, but in this case the difference values increases proportion-

ally with the size of the MC. For the third feature, 𝑓3, the mean value of each 

annulus is close to its maximum value. Then, the difference between first and 
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second mean values must be greater than or equal to 1 pixel; otherwise, this 

difference is less than 1 pixel, when MCs are not present. Another feature is the 

entropy value. For each annular region the entropy value should be ideally close 

to zero. Thus, the difference of entropy values between the first and second an-

nular regions should be close to zero. Meanwhile, when there are not MCs, the 

entropy value should be greater than zero since background intensity values are 

characterized by containing salt and pepper noise. 

Figure 18 shows in general the process for detecting and classifying MC. For the 

classification stage, two classifiers, KNN and SVM, were tested. The results of 

these classifiers are shown in the next chapter and for further details consult the 

published paper [87]. 

 

Figure 18. General process to detect and classify a MC 
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 Summary 

This chapter stated the problem that motivated this research work. The high 

workload of specialized radiologists who are experts in the screening process. 

Likewise, the objectives and contributions of this dissertation are presented. 

Then, the most important characteristics of the main databases and their mam-

mograms are presented. The images that were used in each of these databases 

are mentioned. Finally, it presents the most important aspects that were per-

formed for the segmentation and detection of microcalcifications, such as the 

analysis of different thresholding methods and the creation of a model based on 

annular regions. The results of the methods and analysis presented in this chapter 

are described on the next Chapter. 
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Chapter 3. Results 

3.1 Microcalcification segmentation results 

This dissertation work introduces a new approach to the detection of MCs in 

mammograms. The first stage of this work is to understand the importance of 

early detection and how MCs are relevant at this stage. Important aspects of 

MCs were defined as their relation of intensity to the surrounding tissue. Thus, 

this help us defining the subtle, obvious and cluster groups. Separating them into 

these groups, the detection of MCs improves using a technique as simple as 

thresholding. The results of this part of the research are presented in Table 9, 

showing the different methods of thresholding that were applied and the corre-

sponding results.  

Table 9. Total result accordance to category and techniques 

 
Inter-

modes 
Kittler Entropy Otsu 

Total 

GT 

Obvious 15 1 15 6 16 

Cluster 39 13 56 23 79 

Subtle 3 3 6 6 17 

Total 
(MCs) 

57 17 77 34 112 

Total (%) 50.893 15.179 68.750 30.357  

 

3.2 Microcalcification model for detection 

To compare works that detect micro-calcifications, it is essential to compare 

efficiency among different proposed methods. To evaluate the performance of the 

proposed method, True Positive Rate (TPR) or sensitivity, False Positive Rate 

(FPR), specificity and accuracy are used as figures of merit. TPR, also known as 

sensitivity or recall or detection alarm, is the probability that the outcome of a 
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diagnosis is positive given that the patient presents breast cancer, and it is given 

as, 

 

 
𝑇𝑃𝑅 =  

𝑇𝑃

𝑇𝑃 +  𝐹𝑁
 

(9) 

 

where true positives (TP) are those micro-calcifications correctly identified and 

false negatives (FN) are those micro-calcifications incorrectly rejected. False Pos-

itive Rate (FPR), also known as false alarm, is defined as the probability that 

the outcome of a breast cancer diagnosis is positive given that the patient is 

healthy according to 

 

 
𝐹𝑃𝑅 =  

𝐹𝑃

𝑇𝑁 +  𝐹𝑃
 

(10) 

 

where true negatives (TN) are those cases correctly rejected and false positives 

(FP) are those artifacts incorrectly detected as micro-calcifications. Specificity is 

defined as the probability that the outcome of a breast cancer diagnosis is nega-

tive given that the patient is healthy according to 

 

 
𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  

𝑇𝑁

𝑇𝑁 +  𝐹𝑃
= 1 − 𝐹𝑃𝑅 

(11) 

 

Accuracy is another parameter that becomes a useful tool to assist in the meas-

uring of the performance of the detecting algorithm since it specifies the percent-

age of breast cancer diagnosis which are correct, 
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𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  

𝑇𝑃 +  𝑇𝑁

𝑇𝑃 +  𝑇𝑁 +  𝐹𝑃 +  𝐹𝑁
 

(12) 

 

The receiver operating characteristic (ROC) curve compares operating charac-

teristics, TPR vs. FPR by plotting them at different plotting settings. For the 

case of two classes, a feature vector 𝒙 is classified as Positive or Negative, where 

𝒙 is described by a probability density function 𝑓1(𝒙) if it is Positive (above a 

threshold hyper-plane 𝒯); otherwise, 𝒙 is described by another probability density 

function 𝑓2(𝒙), if it is Negative (below a threshold hyper-plane 𝒯). Thus, the 

TPR is given by 𝑇𝑃𝑅(𝒯) = ∫ 𝑓1(𝒙) 𝑑𝒙 and the FPR is given by 𝐹𝑃𝑅(𝒯) =

∫ 𝑓2(𝒙) 𝑑𝒙. The ROC plots 𝑇𝑃𝑅(𝒯) versus 𝐹𝑃𝑅(𝒯) as hyper-plane 𝒯 is varied. 

The area under the curve (AUC), given by 𝐴𝑈𝐶 =  ∫ 𝑇𝑃𝑅(𝐹𝑃𝑅) 𝑑𝒯
∞

−∞
, is equal 

to the probability that a classifier ranks a randomly chosen positive higher than 

a randomly chosen negative one. 

Efficiency is measured in terms of number of lesions and not on number of 

images. Out of 20 abnormal mammograms and 207 normal mammograms in the 

MIAS data set, all images were used with 268 micro-calcifications extracted from 

abnormal mammograms and 268 ROIs, without MC, randomly extracted from 

normal mammograms. ROIs for MC detection are 21 X 21 pixels. By counting 

the number of MC candidates, labeled as TP, FP, TN, and FN, the proposed 

method for MC detection, on the MIAS data set, yields a TPR of 0.9590 with 

kNN and 0.9664 with SVM, a FPR of 0.0224 with kNN and 0.0299 with SVM, 

an accuracy of 0.9683 with kNN and 0.9683 with SVM, and an AUC of 0.9885 

with kNN and 0.9934 with SVM. These results are shown in the first two rows 

out of the last five rows of Table 10. 

The same set of efficiency measurements were carried out with 114 MCs and 

114 normal ROIs, extracted from the DDSM data set. ROIs for MC detection 

are 21 X 21 pixels. The proposed method for MC detection, on the DDSM data 

set, yields a TPR of 0.9386 with kNN and 0.9211 with SVM, a FPR of 0.0702 

with kNN and 0.0526 with SVM, an accuracy of 0.9664 with kNN and 0.9342 
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with SVM, and an AUC of 0.9742 with kNN and 0.9556 with SVM. These results 

are shown in the first two rows out of the last five rows of Table 10. 

The same set of experiments is also applied to MCs and normal candidates 

from both data sets, MIAS and DDSM, yielding a TPR of 0.9241 with kNN and 

0.9476 with SVM, a FPR of 0.0288 with kNN and 0.0550 with SVM, an accuracy 

of 0.9476 with kNN and 0.9463 with SVM, and an AUC of 0.9826 with kNN and 

0.9802 with SVM. These results are shown in the first two rows out of the last 

five rows of Table 10. 

ROC curves, generated by the proposed method, based on the SVM classifier 

and kNN, are shown in Figure 19 and Figure 20, respectively. Each Figure shows 

ROC curves, after applying the corresponding classifier to three different data 

sets, MIAS, DDSM, and a combination of both. The AUC parameter, for each 

ROC curve, is provided in previous paragraphs and in the first two rows within 

the last five rows in Table 10.  

 

Figure 19.  ROC (TPR vs. FPR) obtained by testing the method with the SVM classifier on 

three different data sets, MIAS (red curve), DDSM (blue curve), and the combination of both 

data sets (orange curve). 
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Figure 20.  ROC (TPR vs. FPR) obtained by testing the method with the kNN classifier on three 

different data sets, MIAS (red curve), DDSM (blue curve), and the combination of both data 

sets (orange curve).  

Performance is measured on the MIAS data set, by using both classifiers (kNN 

and SVM), for each breast density type, fatty, fatty-glandular and dense. The 

proposed method, applied on MIAS dense mammograms, yields a TPR of 0.9835 

with kNN and 0.9752 with SVM, a FPR of 0.0165 with kNN and 0 with SVM, 

an accuracy of 0.9835 with kNN and 0.9876 with SVM, and an AUC of 0.9944 

with kNN and 0.9951 with SVM. The proposed method, applied on MIAS fatty 

mammograms, yields a TPR of 0.9400 with kNN and 0.9200 with SVM, a FPR 

of 0.04 with kNN and 0 with SVM, an accuracy of 0.95 with kNN and 0.96 with 

SVM, and an AUC of 0.9592 with kNN and 0.9928 with SVM. The proposed 

method, applied on MIAS fatty-glandular mammograms, yields a TPR of 0.9897 

with kNN and 0.9691 with SVM, a FPR of 0.1031 with kNN and 0.0309 with 

SVM, an accuracy of 0.9433 with kNN and 0.9691 with SVM, and an AUC of 

0.951 with kNN and 0.9930 with SVM. These results are provided in the last 

three rows of Table 10. 

ROC curves, based on the application of the SVM and kNN, are shown in 

Figure 21 and Figure 22, respectively. Each Figure shows ROC curves, after 
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applying the corresponding classifier to MIAS mammograms for each breast den-

sity: fatty, fatty-glandular, and dense.  

 

Figure 21. ROC (TPR vs. FPR) obtained by testing the method with the SVM classifier on the 

MIAS data set for each density group, fatty (purple curve), fatty-glandular (blue curve), and 

dense (green curve). 

 

Figure 22. ROC (TPR vs. FPR) obtained by testing the method with the kNN classifier on the 

MIAS data set for each density group, fatty (red curve), fatty-glandular (green curve), and 

dense (black curve). 



44 
 

Once a way to segment the MCs has been studied, a model for the detection 

of MCs was created, while reducing false positives. Table 10 shows the perfor-

mance of different methods, including the proposed one, in terms of TPR or 

sensitivity, FPR, accuracy and AUC where different public data sets are used. 

The purpose of Table 10 is to show the different data sets, and levels of TPR, 

FPR, accuracy and AUC, proposed by the scientific community, working on the 

problem of MC detection. The proposed approach is included among those ap-

proaches that use data sets, MIAS and/or DDSM. Some methods do not report 

some of the performance measures (TPR, FPR, accuracy, AUC). After observing 

the sixth column of Table 10, it is concluded that our method is the only one 

which uses all mammograms from each data set. Also, it is the only method which 

analyzes all the micro-calcifications, extracted from each data set. The method, 

proposed in [43] , is the second one with the highest TPR (0.9810), at the expense 

of very high FPR (0.6300), while accuracy and AUC values are not reported. 

This method is applied to some mammograms from the MIAS data set. Our 

approach achieves the highest values in terms of TPR, accuracy and AUC, and 

it also reaches the lowest FPR values. 

Table 10. Performance of different methods for detection of micro-calcifications. 

Ref. TPR FPR Accuracy AUC Data 
set 

Number of images 

[43] 0.9810 0.63   
DDSM 
MIAS 

50/322 MIAS im-
ages. 
140 DDSM im-
ages. 

[88] 
kNN: 
0.89 
MIAS 

kNN: 
0.19 
MIAS 

 

SVM: 
0.98 
MIAS 
ELM: 
0.9168 
DDS
M 

DDSM 
MIAS 

26 MIAS ROIs 
(12 benign, 14 out 
of 20 malignant). 
150 DDSM ROIs 
(82 benign 68 ma-
lignant). 

[45]   

kNN: 
0.95 
MIAS 
kNN: 
0.86 
DDSM 

kNN: 
0.96 
MIAS 
kNN: 
0.90 
DDS
M 

DDSM 
MIAS 
10 fold 

Cluster ROIs of 
352 X 301. 
9 out of 20 MIAS 
ROIs malignant 
and 11 benign. 
14 DDSM ROIs 
malignant and 11 
benign. 

[48] 0.97 0.45     Cluster ROIs. 



45 
 

per 
image 

234 ROIs (150 

abnormal – 84 
normal). 
MIAS, USCF and 
DDSM data sets. 
DDSM images (27 

abnormal – 18 
normal). 

[47]   

kNN: 
0.95  
MIAS 
kNN: 
0.78  
DDSM 

0.95 
MIAS 
0.77 
DDS
M 

MIAS 

Cluster ROIs of 
512 X 512. 
20/20 MIAS im-
ages. 
DDSM images 
with 134 malig-

nant – 146 be-
nign. 

[44] 0.8715  0.9143 0.9036 MIAS  

[40] 0.957  0.959 0.97 MIAS 

23 mammograms 
(7 Glandular, 10 
Dense, 6 Fatty) 
containing micro-
calcification clus-
ters.  
50 mammograms 
(15 Glandular, 20 
Dense, 15 Fatty) 
without micro-
calcifications. 

Pro-
posed 
KNN 

0.9386 
0.9590 
0.9241 

0.0702 
0.0224 
0.0288 

0.9664 
0.9683 
0.9476 

0.9742 
0.9885 
0.9826 

DDSM 
MIAS 
Both 

20/20 MIAS ab-
normal images. 
 
207/207 MIAS 
normal images. 
 
ROIs of 21 X 21 
pixels. 
 
 
268 normal candi-
dates and 268 mi-
cro-calcifications 
on MIAS data 
set. 
 
114 normal candi-
dates and 114 mi-
cro-calcifications 
on DDSM data 
set. 

Pro-
posed 
SVM 

0.9211 
0.9664 
0.9476 

0.0526 
0.0299 
0.0550 

0.9342 
0.9683 
0.9463 

0.9656 
0.9934 
0.9802 

DDSM 
MIAS 
Both 

Pro-
posed 
MIAS 
dense 

KNN: 
0.9835 
SVM: 
0.9752 

KNN: 
0.0165 
SVM: 
0 

KNN: 
0.9835 
SVM: 
0.9876 

KNN: 
0.9944 
SVM: 
0.9951 

 

Pro-
posed 
MIAS 
fatty 

KNN: 
0.9400 
SVM: 
0.9200 

KNN: 
0.04 
SVM: 
0 

KNN: 
0.95 
SVM: 
0.96 

KNN: 
0.9592 
SVM: 
0.9928 

 

Pro-
posed 
MIAS 
fatty-
glandu-
lar 

kNN: 
0.9897 
SVM: 
0.9691 

KNN: 
0.1031 
SVM: 
0.0309 

KNN: 
0.9433 
SVM: 
0.9691 

KNN: 
0.951 
SVM: 
0.9930 
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Chapter 4. Conclusion and future work 

4.1 Discussion 

The results in Table 7 show that Entropy algorithm has better performance in 

the three categories, followed by Intermodes method. However, these algorithms 

did not get close to 100 percent, especially in subtle and cluster category. This 

was mainly due to the fact that in some images the MCs were 3x3 pixels in size, 

which could be considered as noise, making it difficult to segment them. It is also 

always important taking into consideration a fine adjustment for subtle MCs 

segmentation. Therefore, there is a trade-off between obvious and subtle segmen-

tation when they are together. The Otsu method, despite being the most widely 

used, showed its clear dependence on bimodal histograms. For this type of images, 

the value of threshold was not always in the valley of bimodal peaks, as the Otsu 

method expects. The entropy method works best because it looks for areas where 

the pixels are similar, that is, less entropy. In most cases the background has a 

higher entropy level compared to the MCs. 

In the case of MCs detection, works of [43], [39], [42], [44], [46]- [47], in Table 

8, do not provide enough detail on how it is decided to exclude some data set 

images from experiments, particularly regarding images with abnormal ROIs. Not 

including all mammograms from the data set, probably explains the generation 

of better results that those, obtained by using the whole available set of abnormal 

images. 

Results of the proposed method are better than those from other recent meth-

ods, in terms of sensitivity, false positive rate, accuracy, and area under the ROC 

curve; despite the fact that most previous works do not use all the available 

abnormal images in data sets, and do not explain why some data set images were 

chosen, and others were not, for their experiments. 

This proposed method, that uses an annulus-based micro-calcification model, 

reflects physical conditions of mammogram into patient condition, which gives 

generality. The generality of the model was tested with three different datasets, 

MIAS, DDSM, and combined. 
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4.2 Conclusions 

Important aspects to the solution of this problem are the reduced number of 

features (just four features), low computational cost, the use of a micro-calcifica-

tion model based on annular regions which reflects real physical conditions in 

mammograms from women with MCs, features which are independent of image 

resolution, outstanding performance results. The proposed method promises a 

good future because of its simplicity for implementation and the advantage of 

using a reduced number of features and resources. 

After comparing the proposed approach with other recent methods, our ap-

proach achieves the best performance in terms of true positive rate (TPR) or 

sensitivity, false positive rate (FPR), accuracy, and area under the ROC curve; 

even though other methods did not include all available abnormal images, from 

a data set; and the fact that these other works do not specify image selection for 

experiments. Methods, for MC detection on dense mammograms, show very low 

performance; however, we give the best performance during MC detection on 

dense mammograms with 0.9752 for TPR, 0 for FPR, 0.9876 for accuracy, and 

0.9951 for AUC. 

As mentioned earlier, it is expected that in the coming years mammography 

will be completely digital. Therefore, the resolution of the images will increase. 

Therefore, it is an important factor to be taken into consideration, i.e. the algo-

rithm should be image resolution independent. The algorithm proposed in this 

work has considered image resolution independence by just modifying the mask 

for the extraction of the annular regions for a giving image resolution. 

With respect to the general goal of this work, it was possible to design an 

algorithm capable of segmenting, detecting and classifying microcalcifications in 

various types of density, especially for mammograms with dense density areas. 

Also, the algorithm can be easily adapted for any type of resolution, if the reso-

lution allows the identification of MCs (at least 200 microns per pixel). Also, this 

algorithm was tested in the two of the most used databases, MIAS,  DDSM and 

a combined set of both, showing independence of a given database. As demon-

strated in the previous chapter, the work presented here is competitive with the 

most relevant previous works. 
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4.3 Future Work 

This dissertation focused on the segmentation and detection of microcalcifica-

tions in mammography images. However, it is necessary to implement a prepro-

cessing stage, in which the pectoral area is removed as this can generate false 

positives as well as prevent the detection of some MCs. This is because the level 

of intensity that the pectoral has is greater than or equal to the vast majority of 

MCs present in the mammogram’s image. Once the algorithm can be imple-

mented throughout the full image, the MCs could be marked so that the expert 

can decide on the possible treatment to follow, reliving the expert from having 

to scan the whole image, thus allowing him/her to analyze many more mammo-

grams in a given time. 

Another important aspect that can be done in future work is to use some other 

databases, both public and private. Likewise, this algorithm can be implemented, 

as originally proposed, as the first reader in the screening stage. In such a way 

that the expert can be helped by pointing out the most likely areas to have MCs 

that she/he should analyze. All this to reduce the workload of the expert and 

increase his/her productivity.  

4.4 Contribution 

This dissertation contributed to the segmentation of MCs. For this, it was 

contributed in the definition of MCs according to their surrounding tissue; that 

is, at the intensity level. So, the MCs were defined as obvious, subtle and cluster. 

Also, in the segmentation stage it was found that the entropy thresholding 

method gave better results than the Otsu method, which is the most used. This 

could be observed by the fact that the histogram of MCs are mostly unimodal. 

Also, the design of a gray-scale structural model based on annulus was contrib-

uted. This model represents the nature of the MCs which makes it independent 

of breast density. Also, this model can be easily scaled for any resolution. This 

was verified when testing this model with two databases with different resolu-

tions. 

.
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